版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中新课标数学基础知识汇编第一部分 集合与简易逻辑1理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点? ;2数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决,特别是在集合的交、并、补的运算之中。注意是任何集合的子集,是任何非空集合的真子集。注意补集思想的应用(反证法,对立事件,排除法等)。3(1)含n个元素的集合的子集数为2n,真子集数为2n1;非空真子集的数为2n-2;(2) 注意:讨论的时候不要遗忘了的情况;(3)。4四种命题:原
2、命题:若p则q; 逆命题:若q则p;否命题:若p则q;逆否命题:若q则p注:原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时常常借助判断其逆否命题的真假5充要条件的判断:(1)定义法-正、反方向推理;(2)利用集合间的包含关系:例如:若,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;6逻辑连接词:且(and) :命题形式 pq; p q pq pq p或(or):命题形式 pq; 真 真 真 真 假非(not):命题形式p . 真 假 假 真 假 假 真 假 真 真 假 假 假 假 真7全称量词与存在量词全称量词-“所有的”、“任意一个”等,用表示; 全称命题p:
3、; 全称命题p的否定p:。存在量词-“存在一个”、“至少有一个”等,用表示; 特称命题p:; 特称命题p的否定p:;第二部分 函数、导数与不等式(一)函数1映射:注意 第一个集合中的元素必须有象;一对一,或多对一。2函数定义域的求法:函数解析式有意义;符合实际意义;定义域优先原则函数解析式的求法:代入法,凑配法,换元法,待定系数法,函数方程法函数值域的求法:观察法 ;配方法 ;判别式法 ;函数单调法;换元法 ;不等式法(); 数形结合法(斜率、距离、绝对值的意义等);函数单调法(、等);导数法3分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。4复合函数的有关问题(1)复合函数
4、定义域求法: 若f(x)的定义域为a,b,则复合函数fg(x)的定义域由不等式ag(x)b解出 若fg(x)的定义域为a,b,求 f(x)的定义域,相当于xa,b时,求g(x)的值域。(2)复合函数单调性的判定:首先将原函数分解为基本函数:内函数与外函数;分别研究内、外函数在各自定义域内的单调性;根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。注意:外函数的定义域是内函数的值域。5函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的必要条件;是奇函数;是偶函数 ;奇函数在原点有定义,则;在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析
5、式较为复杂,应先化简(等价变形),再判断其奇偶性;6函数的单调性单调性的定义:在区间上是增(减)函数当时;单调性的判定: 定义法:注意:一般要将式子化为几个因式作积或作商的形式,以利于判断符号;导数法(见导数部分);复合函数法(见4(2)同增异减);图像法。注:证明单调性要用定义法或导数法;求单调区间,先求定义域;多个单调区间之间不能用“并集”、“或”;单调区间不能用集合或不等式表示。7函数的周期性(1)周期性的定义:对定义域内的任意,若有 (其中为非零常数),则称函数为周期函数,为它的一个周期。所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。(2)三角函数的
6、周期 ; ; ;函数周期的判定:定义法(试值) 图像法 公式法(利用(2)中结论)与周期有关的结论:或 的周期为;的图象关于点中心对称周期2;的图象关于直线轴对称周期为2;的图象关于点中心对称,直线轴对称周期4;8幂、指、对的运算法则:, 。9基本初等函数的图像与性质幂函数: ( ;指数函数:;对数函数:;正弦函数:;余弦函数: ;(6)正切函数:;一元二次函数:;其它常用函数:正比例函数:;反比例函数:;特别的,函数;10二次函数:解析式:一般式:;顶点式:,为顶点;零点式: 。二次函数问题解决需考虑的因素:开口方向;对称轴;端点值;与坐标轴交点;判别式;两根符号。二次函数问题解决方法:数形
7、结合;分类讨论。11函数图象图象作法 :描点法(注意三角函数的五点作图)图象变换法导数法图象变换:平移变换:,左“+”右“-”; 上“+”下“-”;伸缩变换:, (纵坐标不变,横坐标伸长为原来的倍;, (横坐标不变,纵坐标伸长为原来的倍;对称变换:; ; ;翻转变换:右不动,右向左翻(在左侧图象去掉);上不动,下向上翻(|在下面无图象);(3)函数图象(曲线)对称性的证明:证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;证明函数与图象的对称性,即证明图象上任意点关于对称中心(对称轴)的对称点在的图象上,反之亦然;注:曲线C1:f(x,y)=0关于点(a,b)的
8、对称曲线C2方程为:f(2ax,2by)=0;曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2ax, y)=0;曲线C1:f(x,y)=0,关于y=x+a(或y=x+a)的对称曲线C2的方程为f(ya,x+a)=0(或f(y+a,x+a)=0);f(a+x)=f(bx) (xR)y=f(x)图像关于直线x=对称;特别地:f(a+x)=f(ax) (xR)y=f(x)图像关于直线x=a对称;函数y=f(xa)与y=f(bx)的图像关于直线x=对称;12函数零点的求法:直接法(求的根);图象法;二分法.13函数的应用。求解数学应用题的一般步骤:审题认真读题,确切理解题意,明确问
9、题的实际背景,寻找各量之间的内存联系;建模通过抽象概括,将实际问题转化为相应的数学问题,别忘了注上符合实际意义的定义域;解模求解所得的数学问题;回归将所解得的数学结果,回归到实际问题中去。(二)导数14导数: 导数定义:f(x)在点x0处的导数记作;常见函数的导数公式: ; 。导数的四则运算法则:(理科)复合函数的导数:导数的应用:利用导数求切线:注意:所给点是切点吗?所求的是“在”还是“过”该点的切线?利用导数判断函数单调性: 是增函数; 为减函数; 为常数;注:反之,成立吗?求单调区间,先求定义域。 利用导数求极值:求导数;求方程的根;列表得极值。利用导数最大值与最小值:求的极值;求区间端
10、点值(如果有);得最值。利用导数处理恒成立问题,证明不等式,解决实际应用问题15(理科)定积分 定积分的定义:定积分的性质: (常数); (其中。微积分基本定理(牛顿莱布尼兹公式):定积分的应用:求曲边梯形的面积:; 求变速直线运动的路程:;求变力做功:。(三)不等式16均值不等式:注意:积定和最小,和定积最大,一正二定三相等;变形,。17一元二次不等式的解集(联系图象)。尤其当和时的解集你会正确表示吗?设,是方程的两实根,且,则其解集如下表:或或RRR18含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键”注意解完之后要写上:“综上,原不等式的解集是”。注意:按参
11、数讨论,最后应按参数取值分别说明其解集;若按所求变量讨论,最后应求并集. 提醒:(1)解不等式是求不等式的解集,最后务必用集合的形式表示;(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。19不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)1).恒成立问题若不等式在区间上恒成立,则等价于在区间上若不等式在区间上恒成立,则等价于在区间上2). 能成立问题若在区间上存在实数使不等式成立,则等价于在区间上;若在区间上存在实数使不等式成立,则等价于在区间上的
12、.3). 恰成立问题若不等式在区间上恰成立, 则等价于不等式的解集为;若不等式在区间上恰成立, 则等价于不等式的解集为.20求解线性规划问题的步骤是:(1)列约束条件;(2)作可行域,写目标函数;(3)确定目标函数的最优解。第三部分 三角函数、三角恒等变换与解三角形1角的概念的推广,象限角的概念,终边相同的角的表示角度制与弧度制的互化:弧度,弧度,弧度弧长公式:;扇形面积公式:。2三角函数定义:角中边上任意一点为,设则:; 3三角函数符号规律:一全正,二正弦,三两切,四余弦; 4同角三角函数的基本关系:;5诱导公式记忆规律:“奇变偶不变,符号看象限”;6正弦函数、余弦函数的性质:(1)定义域:
13、都是R。(2)值域:都是,对,当时,取最大值1;当时,取最小值1;对,当时,取最大值1,当时,取最小值1。特别提醒:在解含有正余弦函数的问题时,要深入挖掘正余弦函数的有界性(3)周期性:、的最小正周期都是2;和的最小正周期都是。(4)奇偶性与对称性:正弦函数是奇函数,对称中心是,对称轴是直线;余弦函数是偶函数,对称中心是,对称轴是直线(正(余)弦型函数的对称轴为过最高点或最低点且垂直于轴的直线,对称中心为图象与轴的交点)(5)单调性:上单调递增,在单调递减;在上单调递减,在上单调递增。特别提醒,别忘了! 正切函数的图象和性质:(1)定义域:。遇到有关正切函数问题时,注意正切函数的定义域(2)值
14、域是R,在上面定义域上无最大值也无最小值;(3)周期性:是周期函数且周期是,它与直线的两个相邻交点之间的距离是一个周期。绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变(4)奇偶性与对称性:是奇函数,对称中心是,特别提醒:正(余)切型函数的对称中心有两类:一类是图象与轴的交点,另一类是渐近线与轴的交点,但无对称轴,这是与正弦、余弦函数的不同之处。(5)单调性:正切函数在开区间内都是增函数函数性质:类比于研究的性质,只需将中的看成中的,但在求的单调区间时,要特别注意A和的符号,通过诱导公式先将化正。7两角和与差的正弦、余弦、正切公式: 。
15、8二倍角公式:;。三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。注:(1)(其中角所在的象限由a, b的符号确定,角的值由确定)在求最值、化简时起着重要作用。(2)了解几个重要恒等式(和积互化公式)9正、余弦定理正弦定理(是外接圆直径)注:; 余弦定理:等三个;注:等三个。特别提醒:(1)求解三角形中的问题时,一定要注意这个特殊性:;(2)求解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化。10。几个公式:三角形面积公式:;内切圆半径r=;外接圆直径2R=11已知时三角形解的个数的判定: AbaCh其中h=bsinA,A为锐角时:ah时,无解;a=h
16、时,一解(直角);hab时,一解(锐角)。第四部分 平面向量1向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。(2)零向量:注意零向量的方向是任意的;(3)单位向量(4)相等向量:(5)平行向量(也叫共线向量):规定零向量和任何向量平行。(6)相反向量2平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数、,使a=e1e2。3实数与向量的积:实数与向量的积是一个向量,记作,它的长度和方向规定如下:当0时,的方向与的方向相同,当0时,的方向与的方
17、向相反,当0时,注意:0。4向量的线性运算向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,那么向量叫做与的和,即;向量的减法:用“三角形法则”:设,由减向量的终点指向被减向量的终点。注意:此处减向量与被减向量的起点相同。5平面向量的数量积:(1)两个向量的夹角:对于非零向量,作,称为向量,的夹角,当0时,同向,当时,反向,当时,垂直。(2)平面向量的数量积:如果两个非零向量,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即。规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。(
18、3)在上的投影为,它是一个实数,但不一定大于0。(4)的几何意义:数量积等于的模与在上的投影的积。(5)向量数量积的性质:设两个非零向量,其夹角为,则: ; 当,同向时,特别地,;当与反向时,;当为锐角时,0,且不同向,是为锐角的必要非充分条件;当为钝角时,0,且不反向,是为钝角的必要非充分条件; 非零向量,夹角的计算公式:;。6向量的坐标运算:设,则:向量的加减法运算:,。实数与向量的积:。若,则,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。平面向量数量积:。向量的模:。两点间的距离:若,则。向量平行(共线)的充要条件:0。向量垂直的充要条件: .特别地7向量的运算律:
19、(1)交换律:,;(2)结合律:,;(3)分配律:,。提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即8向量中一些常用的结论:(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;(2),特别地,当同向或有;当反向或有;当不共线(这些和实数比较类似).(3)在中,若,则其重心的坐标为。为的重心,特别地为的重心;为的垂心;向量所在直线过的内心(是的角平分线所在直线);(4)向量中三终
20、点共线存在实数使得且.附:(理科)P,A,B,C四点共面。第五部分 数列1数列的概念:数列是一个定义域为正整数集N*(或它的有限子集1,2,3,n)的特殊函数,数列的通项公式也就是相应函数的解析式。2等差数列的有关概念:(1)等差数列的判断方法:定义法或。(2)等差数列的通项:或。(3)等差数列的前和:,。(4)等差中项:若成等差数列,则A叫做与的等差中项,且3等比数列的有关概念:(1)等比数列的判断方法:定义法,其中或。(2)等比数列的通项:或。(3)等比数列的前和:当时,;当时,。特别提醒:等比数列前项和公式有两种形式,为此在求等比数列前项和时,首先要判断公比是否为1,再由的情况选择求和公
21、式的形式,当不能判断公比是否为1时,要对分和两种情形讨论求解。(4)等比中项:若成等比数列,那么A叫做与的等比中项。提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个4等差数列的性质:(1)当公差时,等差数列的通项公式是关于的一次函数,且斜率为公差;前和是关于的二次函数且常数项为0.(2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。(3)当时,则有,特别地,当时,则有.(4)若、是等差数列,则、 (、是非零常数)、 ,也成等差数列,而成等比数列;若是等比数列,且,则是等差数列.(5)在等差数列中,当项数为偶数时,;项数为奇数时,(这里即);。(6)
22、若等差数列、的前和分别为、,且,则.(7)“首正”的递减等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和。法一:由不等式组确定出前多少项为非负(或非正);法二:因等差数列前项是关于的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性。(8)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究.5等比数列的性质:(1)当时,则有,特别地,当时,则有.(2) 若是等比数列,则、成等比数列;若成等比数列,则、成等比数列;
23、 若是等比数列,且公比,则数列 ,也是等比数列。当,且为偶数时,数列 ,是常数数列0,它不是等比数列. (3)若,则为递增数列;若, 则为递减数列;若 ,则为递减数列;若, 则为递增数列;若,则为摆动数列;若,则为常数列.(4) 当时,这里,但,这是等比数列前项和公式的一个特征,据此很容易根据,判断数列是否为等比数列。(5) (6) 在等比数列中,当项数为偶数时,;项数为奇数时,.(7)如果数列既成等差数列又成等比数列,那么数列是非零常数数列,故常数数列仅是此数列既成等差数列又成等比数列的必要非充分条件。6数列通项的求法:公式法:等差数列通项公式;等比数列通项公式。已知(即)求,用作差法:。已
24、知求,用作商法:。已知条件中既有还有,有时先求,再求;有时也可直接求。若求用累加法:。已知求,用累乘法:。已知递推关系求,用构造法(构造等差、等比数列)。特别地,(1)形如、(为常数)的递推数列都可以用待定系数法转化为公比为的等比数列后,再求;形如的递推数列都可以除以得到一个等差数列后,再求。(2)形如的递推数列都可以用倒数法求通项。 (3)形如的递推数列都可以用对数法求通项。(7)(理科)数学归纳法。(8)当遇到时,分奇数项偶数项讨论,结果可能是分段形式。7数列求和的常用方法:(1)公式法:等差数列求和公式;等比数列求和公式。(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同
25、类项”先合并在一起,再运用公式法求和。 (3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前和公式的推导方法).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:; ;,; ;第六部分 复数1概念:z=a+biRb=0 (a,bR)z= z20;z=a+bi是虚数b0(a,bR);z=a+
26、bi是纯虚数a=0且b0(a,bR)z0(z0)z20时,变量正相关; 0;7圆的方程的求法:待定系数法;几何法;圆系法。8圆系:; 注:当时表示两圆交线。 。9点、直线与圆的位置关系:(主要掌握几何法)点与圆的位置关系:(表示点到圆心的距离)点在圆上;点在圆内;点在圆外。直线与圆的位置关系:(表示圆心到直线的距离)相切;相交;相离。圆与圆的位置关系:(表示圆心距,表示两圆半径,且)相离;外切;相交;内切;内含。10与圆有关的结论:(1)以A(x1,y2)、B(x2,y2)为直径的圆的方程:(xx1)(xx2)+(yy1)(yy2)=0。(2)过x2+y2=r2上的点M(x0,y0)的切线方程为:x0 x+y0y=r2;过圆(x-a)2+(y-b)2=r2上的点M(x0,y0)的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2;(3)从圆外一点引圆的切线一定有两条,可先设切线方程,再根据相切的条件,运用几何方法(抓住圆心到直线的距离等于半径)来求;过两切点的直线(即“切点弦”)方程的求法:先求出以已知圆的圆心和这点为直径端点的圆,该圆与已知圆的公共弦就
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【教案】部编语文三上10 在牛肚子里旅行【国家级】一
- 《光源知识培训》课件
- 《合众人寿公司介绍》课件
- 医疗行业竞品分析
- 医药代表培训完整教程
- 福建省龙岩市2020-2021学年高二上学期期末考试化学试题(解析版)
- 从职业规划大学生
- 中医护理知识科普
- 乙醇拭浴目的适应证利用乙醇易挥发及具有刺激血管扩张的
- 氧气吸入法一概念
- 90、808系列铝合金门窗自动计算下料表
- 管道定额价目表
- 工期日历天计算器
- 相敏检波电路
- 私募股权投资基金基本知识(共45页).ppt
- IEC国内技术对口单位
- 浅谈公务用车费用审计
- (完整)三年级上册应用题,青岛版
- 南市水厂改造工程评估报告
- 炼油厂化重整装置生产原理及工艺
- (最新)陕西省建筑工程施工质量验收技术资料管理整编规定及指
评论
0/150
提交评论