版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1二、平面问题有限单元法有限元法分析问题的主要步骤:连续体离散化单元分析整体分析三角形单元 ijm位移函数:矩阵形式:A为三角形单元的面积代入水平位移分量和结点坐标:可逆矩阵伴随矩阵。将其行列式中各元素的代数余子式按行列式中各元素的顺序排列成方阵,再转置后得的方阵。行列式。其值为面积的2倍。第三章 用常应变三角形单元解弹性力学平面问题T的伴随矩阵1的代数余子式第三章 用常应变三角形单元解弹性力学平面问题将垂直位移分量和结点坐标代入第三章 用常应变三角形单元解弹性力学平面问题第三章 用常应变三角形单元解弹性力学平面问题(下标i,j,m轮换)令形函数形函数矩阵第三章 用常应变三角形单元解弹性力学平
2、面问题1、在单元结点上形态函数的值为1或为0。2、在单元中的任意一点上,三个形态函数之和等于1。3、 三角形单元在单元边界上的形函数与第三个顶点的坐标无关( i, j, m 轮换 )形态函数性质第三章 用常应变三角形单元解弹性力学平面问题2)、单元载荷移置 移植载荷遵循的原则:非结点载荷移植到结点上虚功等效原则是指原载荷与结点载荷在任何虚位移上所做的虚功二者相等XyijmqP第三章 用常应变三角形单元解弹性力学平面问题单元的虚位移表示方法(线位移)结点载荷实移位虚位移第三章 用常应变三角形单元解弹性力学平面问题(1)集中载荷移植ijmPxPyPc由虚功等效原则 结点力作功外力作功xyo第三章
3、用常应变三角形单元解弹性力学平面问题移植到结点上等效结点力集中力iXijmxyoYjXjYiYmXm例题1:在均质、等厚的三角形单元ijm的任意一点o(0.4a,0.4a)上作用有集中载荷P=100N ,与水平方向成 =45,求单元的等效结点载荷。Po XYi (a,0)j (0,a)m (0,0)1)求形函数矩阵解:等腰直角三角形的面积A为:2)求单元等效结点载荷(2) 体力的移植令单元所受的均匀分布力为由虚功等效原则 结点力作功体力作功第三章 用常应变三角形单元解弹性力学平面问题(3)分布面力的移植结点力作功面力作功由虚功等效原则 Xyijmp例:均质、等厚的三角形单元ijm的结点坐标如图
4、所示,ij边上作用有沿y轴负方向呈三角形分布的载荷,载荷密度最大值为q ,单元的厚度为t,试求单元的等效结点载荷。 S ( i ,j ,m轮换) 将i ,j ,m的坐标代入得: (1分) 形函数矩阵为: 解:(1)、计算形函数: (2)、计算等效节点载荷: 在边界jm和mi上的面力为零,所以上式第二项和第三项积分应等于零。在边界ij上的面力为: qy因为积分沿逆时针方向,所以有ds=dx3)、由结点位移求单元的应变根据单元的位移函数 由几何方程可以得到单元的应变表达式:B矩阵称为几何矩阵 ( i, j, m 轮换 )第三章 用常应变三角形单元解弹性力学平面问题B矩阵可以表示为分块矩阵的形式B矩
5、阵称为几何矩阵 或应变转换矩阵。( i, j, m 轮换 ) 称为应变矩阵由于线性位移函数,应变矩阵为常数矩阵。因而单元中的应力与应变为常数,称这种单元为常应变单元。4)、由结点位移求单元应力由物理方程得: D称为弹性矩阵平面应力问题称为弹性矩阵5)、由结点位移求单元结点力外力作用下处于平衡状态的弹性体,如果发生虚位移,则所有外力在虚位移上做的虚功等于内应力在虚应变上做的虚功。单元的结点力记为: 单元的虚应变为: 单元的外力虚功为 :单元的内力虚功为: 虚功原理:由虚功原理得:外力虚功内力虚功*第三章 用常应变三角形单元解弹性力学平面问题定义为单元刚度矩阵。 在3结点等厚三角形单元中B和D均为
6、常量,则单元刚度矩阵可以表示为:6)、单元刚度矩阵第三章 用常应变三角形单元解弹性力学平面问题单元刚度矩阵表示为分块矩阵 r=i,j,m s=i,j,m单元刚度矩阵的性质:(1)对称性(2)奇异性称为弹性矩阵总结 称为应变矩阵单元刚度矩阵1、均质、等厚的三角形单元ijm的结点坐标如图所示,jm边上作用有沿y轴负方向按三角形分布的载荷,单元的厚度为1,求单元的等效结点载荷。2022/7/27将i ,j ,m的坐标代入得: 1、三角形面积: 2、计算形函数: 解: 3、计算等效节点载荷: 在边界ij和mi上的面力为零,所以上式第一项和第三项积分应等于零。因为积分沿逆时针方向,x=1-s ,s=1-x所以有ds= -dx 例2:均质、等厚的三角形单元ijm的结点坐标如图所示,ij边上作用有沿x轴负方向均匀分布的载荷q,单元的厚度为t,求单元等效结点载荷。(本小题15分)2022/7/27例3:均质、等厚的三角形单元ijm的结点坐标如图所示,mi边上作用有沿y轴负方向均布的载荷,载荷密度为q,单元的厚度为t,试求单元的等效结点载荷.4. 在均质、等厚的三角形单元ijm坐标如图所示,单元的厚度为t,在ij边上作用呈三角形分布的载荷,载荷密度最大值为q,试计算单元的等效结点载荷.2、如图所示三角形单元的结点坐标,单元的厚度为t,材料的弹性模量为E,泊松比 ,试求该单元的刚度矩阵.3、一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 理发店员工劳务合同范本
- 2024年商品房销售与售后服务合同3篇
- 配送服务合同
- 网络游戏开发与运营合同(04版)
- 物理化学期中复习 第七章
- 膜结构工程2024年度项目评估合同
- 基于二零二四年度的智能交通系统设计与实施合同2篇
- 意向施工协议完整版
- 屋顶租赁合同范本范本
- 总经理聘用合同
- 五脏六腑的结构和功能
- 媒体法与新闻报道媒体侵权与法律追责
- 2024年物流运营与成本控制培训资料
- 富马酸奥赛利定注射液-药品临床应用解读
- 劳务派遣劳务外包服务方案(技术方案)
- 建筑工程竣工验收消防查验文件-消防施工质量专项检查表(主体阶段)-消防施工质量专项检查表装饰装修阶
- 煤气发生炉拆除方案
- 苏教版数学五年级上册全册教学反思(版本1)
- 广东盈科材料有限公司年产64吨高端元器件用电子浆料和LTCC瓷粉建设项目环境影响报告表
- 《凯悦酒店》课件
- 信用卡分期还款手写申请书
评论
0/150
提交评论