2022年最新沪科版八年级数学下册第19章-四边形定向训练试卷(无超纲)_第1页
2022年最新沪科版八年级数学下册第19章-四边形定向训练试卷(无超纲)_第2页
2022年最新沪科版八年级数学下册第19章-四边形定向训练试卷(无超纲)_第3页
2022年最新沪科版八年级数学下册第19章-四边形定向训练试卷(无超纲)_第4页
2022年最新沪科版八年级数学下册第19章-四边形定向训练试卷(无超纲)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、沪科版八年级数学下册第19章 四边形定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在矩形中,连接,以对角线为边,按逆时针方向作矩形的相似矩形,再连接,以对角线为边作矩形的相似矩形,按此规律

2、继续下去,则矩形的周长为( )ABCD2、下列说法正确的是()A平行四边形的对角线互相平分且相等B矩形的对角线相等且互相平分C菱形的对角线互相垂直且相等D正方形的对角线是正方形的对称轴3、如图,菱形ABCD中,BAD = 60,AB = 6,点E,F分别在边AB,AD上,将AEF沿EF翻折得到GEF,若点G恰好为CD边的中点,则AE的长为( )ABCD34、已知一个多边形的内角和与外角和的和为2160,这个多边形的边数为( )A9B10C11D125、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )A三角形B四边形C五边形D六边形6、如图,在正方形有中,E是AB上的动点,(不与

3、A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作DE交DG的延长线于点H,连接,那么的值为( )A1BCD27、如图,四边形ABCD是平行四边形,下列结论中错误的是( )A当ABCD是矩形时,ABC90B当ABCD是菱形时,ACBDC当ABCD是正方形时,ACBDD当ABCD是菱形时,ABAC8、在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( )A(7,3)B(8,2)C(3,7)D(5,3)9、下列说法正确的有( )有一组邻边相等的矩形是正方形 对角线互相垂直的矩形是正方

4、形有一个角是直角的菱形是正方形 对角线相等的菱形是正方形A1个B2个C3个D4个10、如图,将矩形纸片ABCD沿BD折叠,得到BCD,CD与AB交于点E,若140,则2的度数为()A25B20C15D10第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形的面积是8.1平方厘米,以正方形的一个顶点为圆心,正方形的一边长为半径画圆,这个圆的面积是_平方厘米(结果保留)2、在四边形ABCD中,若AB/CD,BC_AD,则四边形ABCD为平行四边形3、七边形内角和的度数是_4、如图,圆柱形容器高为0.8m,底面周长为4.8m,在容器内壁离底部0.1m的点处有一只蚊子,

5、此时一只壁虎正好在容器的顶部点处,若容器壁厚忽略不计,则壁虎捕捉蚊子的最短路程是_m5、如图,点O是平行四边形ABCD的对称中心,EF是过点O的任意一条直线,它将平行四边形分成两部分,四边形ABFE和四边形EFCD的面积分别记为S1,S2,那么S1,S2之间的关系为S1_S2(填“”或“=”或“”)三、解答题(5小题,每小题10分,共计50分)1、(教材呈现)如图是华师版八年级下册数学教材第117页的部分内容结合图,写出完整的证明过程(应用)如图,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=4,BC=5,则E

6、F的长为 (拓展)如图,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=,BC=6,C=45,则五边形ABFEG的周长为 2、如图,在中,ADAB,ABC的平分线交AD于点F,EFAB交BC于点E(1)求证:四边形ABEF是菱形;(2)若AB=5,AE=6,的面积为36,求DF的长3、如图,ABCD的对角线AC,BD相交于点O,点E,点F在线段BD上,且DEBF求证:AECF4、如图,AOB是等腰直角三角形(1)若A(4,1),求点B的坐标;(2)ANy轴,垂足为N,BMy轴,垂足为点M,点P是AB的

7、中点,连PM,求PMO度数;(3)在(2)的条件下,点Q是ON的中点,连PQ,求证:PQAM5、如图,在平行四边形ABCD中,点E、F分别是BC、AD的中点(1)求证:;(2)当时,在不添加辅助线的情况下,直接写出图中等于的2倍的所有角-参考答案-一、单选题1、C【分析】根据已知和矩形的性质可分别求得AC,AC1,AC2的长,从而可发现规律,根据规律即可求得第n个矩形的周长【详解】四边形ABCD是矩形,ADDC,按逆时针方向作矩形ABCD的相似矩形AB1C1C,矩形AB1C1C的边长和矩形ABCD的边长的比为矩形AB1C1C的周长和矩形ABCD的周长的比,矩形ABCD的周长=(2+1)2=6,

8、矩形AB1C1C的周长=,依此类推,矩形AB2C2C1的周长和矩形AB1C1C的周长的比矩形AB2C2C1的周长=矩形AB3C3C2的周长=按此规律矩形的周长为:故选:C【点睛】本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律2、B【分析】根据平行四边形、矩形、菱形、正方形的性质定理判断即可【详解】解:平行四边形的对角线互相平分,不一定相等,A错误;矩形的对角线相等且互相平分,B正确;菱形的对角线互相垂直,不一定相等,C错误;正方形的对角线所在的直线是正方形的对称轴,D错误;故选:B【点睛】本题考查了命题的真假判断,掌握平行四边形、矩形、菱形、正方形的性

9、质是解题的关键3、B【分析】过点D作,垂足为点H,连接BD和BG,利用菱形及等边三角形的性质,求出,在中,求出DH的长,进而求出BG 的长,设,在中,利用勾股定理,列方程,求出的值即可【详解】解:过点D作,垂足为点H,连接BD和BG,如下图所示:四边形ABCD是菱形,与是等边三角形,且点G恰好为CD边的中点,平分AB,在中,由勾股定理可知:, ,由折叠可知:,故有, 设,则,在中,由勾股定理可知:, 即,解得,故选:B【点睛】本题主要是考查了菱形、等边三角形的性质以及勾股定理列方程求边长,熟练综合利用菱形以及等边三角形的性质,求出对应的边或角,在直角三角形中,找到边之间的关系,设边长,利用勾股

10、定理列方程,这是解决本题的关键4、D【分析】依题意,多边形的外角和为360,该多边形的内角和与外角和的总和为2160,故内角和为1800根据多边形的内角和公式易求解【详解】解:该多边形的外角和为360,故内角和为2160-360=1800,故(n-2)180=1800,解得n=12故选:D【点睛】本题考查的是多边形内角与外角的相关知识,掌握多边形的内角和公式是解题的关键5、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形【详解】解:多边形的外角和是360度,又多边形的外角和是内角和的2倍,多边形的内角和是180度,这个多边形

11、是三角形故选:A【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理6、B【分析】作辅助线,构建全等三角形,证明DAEENH,得AE=HN,AD=EN,再说明BNH是等腰直角三角形,可得结论【详解】解:如图,在线段AD上截取AM,使AM=AE, AD=AB,DM=BE,点A关于直线DE的对称点为F,ADEFDE,DA=DF=DC,DFE=A=90,1=2,DFG=90,在RtDFG和RtDCG中,RtDFGRtDCG(HL),3=4,ADC=90,1+2+3+4=90,22+23=90,2+3=45,即EDG=45,EHDE,DEH=90,DEH是等腰直角三角形,AED+BEH

12、=AED+1=90,DE=EH,1=BEH,在DME和EBH中,DMEEBH(SAS),EM=BH,RtAEM中,A=90,AM=AE, ,即=故选:B【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等7、D【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当ABCD是矩形时,ABC90,正确,故A不符合题意;当ABCD是菱形时,ACBD,正确,故B不符合题意;当ABCD是正方形时,ACB

13、D,正确,故C不符合题意;当ABCD是菱形时,ABBC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.8、A【分析】利用平行四边形的对边平行且相等的性质,先利用对边平行,得到D点和C点的纵坐标相等,再求出CD=AB=5,得到C点横坐标,最后得到C点的坐标【详解】解: 四边形ABCD为平行四边形。且。C点和D的纵坐标相等,都为3A点坐标为(0,0),B点坐标为(5,0), D点坐标为(2,3),C点横坐标为, 点坐标为(7,3)故选:A【点睛】本题主要是考察了平行四边形的性质、利用线段长求点坐标,其中,熟练应用平行四边形对边平

14、行且相等的性质,是解决与平行四边形有关的坐标题的关键9、D【分析】根据 正方形的判定定理依次分析判断【详解】解:有一组邻边相等的矩形是正方形,故该项正确; 对角线互相垂直的矩形是正方形,故该项正确;有一个角是直角的菱形是正方形,故该项正确; 对角线相等的菱形是正方形,故该项正确;故选:D【点睛】此题考查了正方形的判定定理,正确掌握正方形与矩形菱形的特殊关系及对应添加的条件证得正方形是解题的关键10、D【分析】根据矩形的性质,可得ABD40,DBC50,根据折叠可得DBCDBC50,最后根据2DB CDBA进行计算即可【详解】解:四边形ABCD是矩形,ABC90,CDAB,ABD=140,DBC

15、ABC-ABD=50,由折叠可得DB CDBC50,2DB CDBA504010,故选D【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出DBC和DBA的度数二、填空题1、8.1【分析】因为圆的半径等于这个正方形的边长,所以r2边长2正方形的面积8.1平方厘米,利用Sr2可解决问题【详解】解:因为圆的半径等于这个正方形的边长,所以r2边长2正方形的面积8.1平方厘米,利用Sr2可得:S8.1(平方厘米);故答案为:8.1【点睛】此题主要考查圆与正方形的面积公式的计算应用,解答此题的关键是明确正方形的边长,即圆的半径2、【分析】根据平行四边形的判定:两组对边分别平

16、行的四边形是平行四边形即可解决问题【详解】解:根据两组对边分别平行的四边形是平行四边形可知:AB/CD,BC/AD,四边形ABCD为平行四边形故答案为:/【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键3、900900度【分析】根据多边形内角和公式计算即可【详解】解:七边形内角和的度数是,故答案为:900【点睛】本题考查了多边形内角和公式,解题关键是熟记n边形内角和公式:4、2.5【分析】如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,然后分别求出AC,BC的长度,利用勾股定理求解即可【详解】解:如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离

17、,圆柱形容器高为0.8m,底面周长为4.8m在容器内壁离底部0.1m的点B处有一只蚊子,此时一只壁虎正好在容器的顶部点A处,过点B作BCAD于C,BCD =90,四边形ADEF是矩形,ADE=DEF=90四边形BCDE是矩形,答:则壁虎捕捉蚊子的最短路程是2.5m故答案为:2.5【点睛】本题主要考查了平面展开最短路径,解题的关键在于能够根据题意确定展开图中AB的长即为所求5、=【分析】根据平行四边形的性质和全等三角形的判定和性质即可得到结论【详解】解:四边形ABCD是平行四边形,ADBC,EDO=FBO,点O是ABCD的对称中心,OB=OD,在DEO与BFO中,DEOBFO(ASA),SDEO

18、=SBFO,SABD=SCDB,S1=S2故答案为:=【点睛】此题主要考查了中心对称,平行四边形的性质以及全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键三、解答题1、【教材呈现】见解析;【应用】 ;【拓展】【分析】(教材呈现)由“ASA”可证AOECOF,可得OEOF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平行四边形,即可证平行四边形AFCE是菱形;(应用)过点F作FHAD于H,由折叠的性质可得AFCF,AFEEFC,由勾股定理可求BF、EF的长,(拓展)过点A作ANBC,交CB的延长线于N,过点F作FMAD于M,由等腰直角三角形的性质可求ANBN3,由勾

19、股定理可求AEAF,再利用勾股定理可求EF的长,再求出五边形ABFEG的周长【详解】解:(教材呈现)四边形ABCD是矩形,AECF,EAOFCO,EF垂直平分AC,AOCO,AOECOF90,AOECOF(ASA)OEOF,又AOCO,四边形AFCE是平行四边形,EFAC,平行四边形AFCE是菱形;(应用)如图,连接AC、EC由(教材呈现)可得平行四边形AFCE是菱形,AFCF,AFEEFC,AF2BF2AB2,(5BF)2BF216,BF,AFCF,ABBC,ABC是直角三角形AC=S四边形AFCE=,EF,故答案为:(拓展)如图,过点A作ANBC,交CB的延长线于N,过点F作FMAD于M,

20、四边形ABCD是平行四边形,C45,ABC135,ABN45,ANBC,ABNBAN45,ANB是等腰直角三角形AN2+BN2=AB2,ANBNANBN3,NC=6+3=9将ABCD沿EF翻折,使点C的对称点与点A重合,AFCF,AFEEFC,ADBC,AEFEFCAFE,AEAF,AF2AN2NF2,AF29(9AF)2,AF5,AEAF5,ANMF,ADBC,四边形ANFM是平行四边形,ANBC,四边形ANFM是矩形,ANMF3,AM=4,MEAEAM1,EF=,BF=NF-BN=9-AF-BN=1,DE=GE=AD-AE=1五边形ABFEG的周长为AB+BF+EF+GE+AG=AB+BF

21、+EF+CD+DE=+1+1=故答案为:【点睛】本题是四边形综合题,考查了平行四边形的性质,菱形的性质,折叠的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键2、(1)见解析;(2)2.5【分析】(1)根据平行四边形的性质和角平分线的性质说明ABF=AFB、可得AB=AF,同理可得AB=AF,再由AFBE可得四边形ABEF是菱形;(2)过A作AHBE垂足为E,根据菱形的性质可得AO=EO、BO=FO,AF=EF=AB=5,AEBF,利用勾股定理可得AO的长,进而可得AE长,利用菱形的面积公式计算出AH的长,然后根据ABCD的面积公式求出AD,最后根据线段的

22、和差即可解答【详解】(1)证明:四边形ABCD是平行四边形,AD/BC,即AF/BEFBE=AFB,ABC的平分线交AD于点F,ABF=EBF,ABF=AFB,AB=AF,又AB/EF,AF/BE四边形ABEF是平行四边形,AB=AF,四边形ABEF是菱形;(2)如图:过A作AHBE垂足为H,四边形ABCD是菱形,AO=EO,BO=FO,AF=AB=5,AEBF,AE=6,AO=3,BO= BF=8,S菱形ABEF=AEBF=86=24,BEAH=24,AH=;S平行四边形ABCD=BCAH=36,BC=平行四边形ABCDAD=BC=FD=AD-AF=-5=2.5【点睛】本题主要考查了菱形的判

23、定与性质、平行四边形的性质以及面积的问题,灵活利用菱形的判定与性质、平行四边形的性质成为解答本题的关键3、见解析【分析】首先根据平行四边形的性质推出ADCB,ADBC,得到ADECBF,从而证明ADECBF,得到AEDCFB,即可证明结论【详解】证:四边形ABCD是平行四边形,ADCB,ADBC,ADECBF,在ADE和CBF中,ADECBF(SAS),AEDCFB,AECF【点睛】本题考查平行四边形的性质,以及全等三角形的判定与性质等,掌握平行四边形的基本性质,准确证明全等三角形并利用其性质是解题关键4、(1)(1,4);(2)45;(3)见解析【分析】(1)过点A作AEx轴于E,过点B作B

24、Fx轴于F,证明OAEBOF得到OF=AE,BF=OE,再由点A的坐标为(-4,1),得到OF=AE=1,BF=OE=4,则点B的坐标为(1,4);(2)延长MP与AN交于H,证明APHBPM得到AH=BM,再由A点坐标为(-4,1),B点坐标为(1,4),得到AN=4,OM=4,BM=1,ON=1,则HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到NHM=NMH=45,即PMO=45;(3)连接OP,AM,取BM中点G,连接GP,则GP是ABM的中位线,AMGP,证明PQOPGB得到OPQ=BPG,再由OPQ+BPQ=90,得到BPG+BPQ=90,即GPQ=90,则PQPG,即PGAM;【详解】解:(1)如图所示,过点A作AEx轴于E,过点B作BFx轴于F,AEO=OFB=90,AOE+OAE=90,又AOB=90,AOE+BOF=90,OAE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论