版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1已知集合,则( )ABCD2已知,则( )ABCD3已知集合,集合,则()ABCD4在中,已知,为线段上的一点,且,则的最小值为( )ABCD5中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以、为顶点的多边形为正五边形,且,则( )ABCD6下列说法正确的是( )A“若,则”的否命题是“若,则”B“若,则”的逆命题为真命题C,使成立D“若,则”是真命题7设点是椭圆上的一点,是椭圆的两个焦点,若,则( )ABCD8已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有( )绕着轴上一点旋转; 沿轴正方向
3、平移;以轴为轴作轴对称;以轴的某一条垂线为轴作轴对称.ABCD9已知抛物线:,点为上一点,过点作轴于点,又知点,则的最小值为( )ABC3D5102019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有( )A18种B20种C22种D24种11若函数的图象如图所示,则的解析式可能是( )ABCD12不等式的解集记为,有下面四个命题:;.其中的真命题是(
4、 )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设点P在函数的图象上,点Q在函数的图象上,则线段PQ长度的最小值为_14函数f(x)x2xlnx的图象在x1处的切线方程为_.15已知向量,满足,则向量在的夹角为_.16如图是一个算法伪代码,则输出的的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为 (为参数),直线与曲线分别交于两点(1)写出曲线的直角坐标方程和直线的普通方程;(2)若点的极坐标为,求的值18(12分)在正三棱柱ABCA1B1C1
5、中,已知AB1,AA12,E,F,G分别是棱AA1,AC和A1C1的中点,以为正交基底,建立如图所示的空间直角坐标系F-xyz.(1)求异面直线AC与BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值19(12分)如图,在直三棱柱ABCA1B1C1中,ABC90,ABAA1,M,N分别是AC,B1C1的中点求证:(1)MN平面ABB1A1;(2)ANA1B20(12分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.21(12分)如图,正方形是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的距离相等,处为红绿灯路口,红绿灯统
6、一设置如下:先直行绿灯30秒,再左转绿灯30秒,然后是红灯1分钟,右转不受红绿灯影响,这样独立的循环运行.小明上学需沿街道从处骑行到处(不考虑处的红绿灯),出发时的两条路线()等可能选择,且总是走最近路线.(1)请问小明上学的路线有多少种不同可能?(2)在保证通过红绿灯路口用时最短的前提下,小明优先直行,求小明骑行途中恰好经过处,且全程不等红绿灯的概率;(3)请你根据每条可能的路线中等红绿灯的次数的均值,为小明设计一条最佳的上学路线,且应尽量避开哪条路线?22(10分)已知是递增的等比数列,且、成等差数列.()求数列的通项公式;()设,求数列的前项和.参考答案一、选择题:本题共12小题,每小题
7、5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】由题意和交集的运算直接求出.【详解】 集合,.故选:C.【点睛】本题考查了集合的交集运算.集合进行交并补运算时,常借助数轴求解.注意端点处是实心圆还是空心圆.2C【解析】利用诱导公式得,再利用倍角公式,即可得答案.【详解】由可得,.故选:C.【点睛】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号.3D【解析】可求出集合,然后进行并集的运算即可【详解】解:,;故选【点睛】考查描述法、区间的定义,对数函数的单调性,以及并集的运算4A【解析】在中,
8、设,结合三角形的内角和及和角的正弦公式化简可求,可得,再由已知条件求得,考虑建立以所在的直线为轴,以所在的直线为轴建立直角坐标系,根据已知条件结合向量的坐标运算求得,然后利用基本不等式可求得的最小值.【详解】在中,设,即,即,即,又,则,所以,解得,.以所在的直线为轴,以所在的直线为轴建立如下图所示的平面直角坐标系,则、,为线段上的一点,则存在实数使得,设,则,消去得,所以,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解是一个单位向量,从而可用、表示,建立、与参数的
9、关系,解决本题的第二个关键点在于由,发现为定值,从而考虑利用基本不等式求解最小值,考查计算能力,属于难题.5A【解析】利用平面向量的概念、平面向量的加法、减法、数乘运算的几何意义,便可解决问题【详解】解:.故选:A【点睛】本题以正五角星为载体,考查平面向量的概念及运算法则等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题6D【解析】选项A,否命题为“若,则”,故A不正确选项B,逆命题为“若,则”,为假命题,故B不正确选项C,由题意知对,都有,故C不正确选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确选D7B【解析】,故选B点睛:本题主要考查利用椭圆的简单性质
10、及椭圆的定义. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系. 8D【解析】计算得到,故函数是周期函数,轴对称图形,故正确,根据图像知错误,得到答案.【详解】,当沿轴正方向平移个单位时,重合,故正确;,故,函数关于对称,故正确;根据图像知:不正确;故选:.【点睛】本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.9C【解析】由,再运用三点共线时和最小,即可求解.【详解】.故选:C【点睛】本题考查抛物线的定义,合理转化是本题的关键,注
11、意抛物线的性质的灵活运用,属于中档题10B【解析】分两类:一类是医院A只分配1人,另一类是医院A分配2人,分别计算出两类的分配种数,再由加法原理即可得到答案.【详解】根据医院A的情况分两类:第一类:若医院A只分配1人,则乙必在医院B,当医院B只有1人,则共有种不同分配方案,当医院B有2人,则共有种不同分配方案,所以当医院A只分配1人时,共有种不同分配方案;第二类:若医院A分配2人,当乙在医院A时,共有种不同分配方案,当乙不在A医院,在B医院时,共有种不同分配方案,所以当医院A分配2人时,共有种不同分配方案;共有20种不同分配方案.故选:B【点睛】本题考查排列与组合的综合应用,在做此类题时,要做
12、到分类不重不漏,考查学生分类讨论的思想,是一道中档题.11A【解析】由函数性质,结合特殊值验证,通过排除法求得结果.【详解】对于选项B, 为 奇函数可判断B错误;对于选项C,当时, ,可判断C错误;对于选项D, ,可知函数在第一象限的图象无增区间,故D错误;故选:A.【点睛】本题考查已知函数的图象判断解析式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.12A【解析】作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【详解】作出可行域如图所示,当时,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图
13、,正确分析是关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由解析式可分析两函数互为反函数,则图象关于对称,则点到的距离的最小值的二倍即为所求,利用导函数即可求得最值.【详解】由题,因为与互为反函数,则图象关于对称,设点为,则到直线的距离为,设,则,令,即,所以当时,即单调递减;当时,即单调递增,所以,则,所以的最小值为,故答案为:【点睛】本题考查反函数的性质的应用,考查利用导函数研究函数的最值问题.14xy0.【解析】先将x1代入函数式求出切点纵坐标,然后对函数求导数,进一步求出切线斜率,最后利用点斜式写出切线方程.【详解】由题意得.故切线方程为y1x1,即xy
14、0.故答案为:xy0.【点睛】本题考查利用导数求切线方程的基本方法,利用切点满足的条件列方程(组)是关键.同时也考查了学生的运算能力,属于基础题.15【解析】把平方利用数量积的运算化简即得解.【详解】因为,所以,因为所以.故答案为:【点睛】本题主要考查平面向量的数量积的运算法则,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.165【解析】执行循环结构流程图,即得结果.【详解】执行循环结构流程图得,结束循环,输出.【点睛】本题考查循环结构流程图,考查基本分析与运算能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1) 曲线的直角坐标方程为即,直线
15、的普通方程为;(2).【解析】(1)利用代入法消去参数方程中的参数,可得直线的普通方程,极坐标方程两边同乘以利用 即可得曲线的直角坐标方程;(2)直线的参数方程代入圆的直角坐标方程,根据直线参数方程的几何意义,利用韦达定理可得结果.【详解】(1)由,得,所以曲线的直角坐标方程为,即, 直线的普通方程为. (2)将直线的参数方程代入并化简、整理,得. 因为直线与曲线交于,两点所以,解得.由根与系数的关系,得,. 因为点的直角坐标为,在直线上.所以, 解得,此时满足.且,故.【点睛】参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数
16、方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题18(1).(2).【解析】(1)先根据空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.(2)分别求得平面BFC1的一个法向量和平面BCC1的一个法向量,再利用面面角的向量方法求解.【详解】规范解答 (1) 因为AB1,AA12,则F(0,0,0),A,C,B,E,所以(1,0,0),记异面直线AC和BE所成角为,则cos|cos|,所以异面直线AC和BE所成角的余弦值为.(2) 设平面BFC1的法向量为= (x1,y1,z1)因为,则取x14,
17、得平面BFC1的一个法向量为(4,0,1)设平面BCC1的法向量为(x2,y2,z2)因为,(0,0,2),则取x2 得平面BCC1的一个法向量为(,1,0),所以cos =根据图形可知二面角F-BC1-C为锐二面角,所以二面角F-BC1-C的余弦值为.【点睛】本题主要考查了空间向量法研究空间中线线角,面面角的求法,还考查了转化化归的思想和运算求解的能力,属于中档题.19(1)详见解析;(2)详见解析.【解析】(1)利用平行四边形的方法,证明平面.(2)通过证明平面,由此证得.【详解】(1)设是中点,连接,由于是中点,所以且,而且,所以与平行且相等,所以四边形是平行四边形,所以,由于平面,平面
18、,所以平面.(2)连接,由于直三棱柱中,而,所以平面,所以,由于,所以.由于四边形是矩形且,所以四边形是正方形,所以,由于,所以平面,所以.【点睛】本小题主要考查线面平行的证明,考查线面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.20(1);(2).【解析】(1)分类讨论去绝对值号,然后解不等式即可.(2)因为对任意,都存在,使得不等式成立,等价于,根据绝对值不等式易求,根据二次函数易求,然后解不等式即可.【详解】解:(1)当时,则当时,由得,解得;当时,恒成立;当时,由得,解得.所以的解集为(2)对任意,都存在,得成立,等价于.因为,所以,且|,当时,式等号成立,即.又因为,当时,式等号成立,即.所以,即即的取值范围为:.【点睛】知识:考查含两个绝对值号的不等式的解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高考语文复习知识清单第2章文学类文本阅读(一)小说专题07写小说文学短评(学生版+解析)
- 各种培训课件教学课件
- 二年级数学计算题专项练习1000题汇编集锦
- 肉鸭采购合同(2篇)
- 望庐山课件教学课件
- 南京工业大学浦江学院《实验艺术》2021-2022学年第一学期期末试卷
- 钢结构施工组织设计【超完美版】
- 多细胞生物体说课稿
- 《长方形的面积》说课稿
- 《小数的加减法》说课稿
- 中国航天发展史主题班会 课件
- 一 《改造我们的学习》(同步练习)解析版
- 2024-2025学年北京市海淀区名校初三第二学期期中练习化学试题含解析
- 孙中山诞辰纪念日主题班会主题班会
- 内科知识练习题库(附答案)
- 物业反恐应急演练方案(2篇)
- 扬州邗江区2023-2024六年级英语上册期中试卷及答案
- 2024年辽宁石化职业技术学院单招职业适应性测试题库含答案
- 2024年燕舞集团限公司公开招聘公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 互联网+远程问诊
- 2024年仓储与配送管理形成性考核答案大揭秘
评论
0/150
提交评论