版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰OBC,将点C向左平移5个单位,使其对应点C恰好落在直线AB上,则点C的坐标为()A(3,3)B(4,3)C(1,3)D(3,4)2把a的根号外的a移到根号内得()ABCD3如图,等腰ABC中,ABAC10,BC6
2、,直线MN垂直平分AB交AC于D,连接BD,则BCD的周长等于()A13B14C15D164观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a的值为A75B89C103D1395若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y图象上的点,并且y10y2y3,则下列各式中正确的是()Ax1x2x3Bx1x3x2Cx2x1x3Dx2x3x16一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( )A30厘米、45厘米; B40厘米、80厘米; C80厘米
3、、120厘米; D90厘米、120厘米7下列计算,正确的是()ABC3D8下列二次根式中,最简二次根式是( )ABCD9如图直线ymx与双曲线y=交于点A、B,过A作AMx轴于M点,连接BM,若SAMB2,则k的值是()A1B2C3D410甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地已知A,C两地间的距离为110千米,B,C两地间的距离为100千米甲骑自行车的平均速度比乙快2千米/时结果两人同时到达C地求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时由题意列出方程其中正确的是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11写出一个平面直角坐标系
4、中第三象限内点的坐标:(_)12如图,ABC是直角三角形,C=90,四边形ABDE是菱形且C、B、D共线,AD、BE交于点O,连接OC,若BC=3,AC=4,则tanOCB=_13某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是_m14如图,在扇形AOB中AOB=90,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当扇形AOB的半径为2时,阴影部分的面积为_15写出一个经过点(1,2)的函数表达式_16计算:()=_三、解答题(共8题,共72分)17(8分)某文具店购进A,B两种钢笔,若购进A种钢笔2支
5、,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元 (1)求A、B两种钢笔每支各多少元? (2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案? (3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月
6、获利最大?最大利润是多少元?18(8分)矩形ABCD中,DE平分ADC交BC边于点E,P为DE上的一点(PEPD),PMPD,PM交AD边于点M(1)若点F是边CD上一点,满足PFPN,且点N位于AD边上,如图1所示求证:PN=PF;DF+DN=DP;(2)如图2所示,当点F在CD边的延长线上时,仍然满足PFPN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明19(8分)已知直线ymx+n(m0,且m,n为常数)与双曲线y(k0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列(1)如图,若m,n,点B的纵
7、坐标为,求k的值;作线段CD,使CDAB且CDAB,并简述作法;(2)若四边形ABCD为矩形,A的坐标为(1,5),求m,n的值;点P(a,b)是双曲线y第一象限上一动点,当SAPC24时,则a的取值范围是 20(8分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?21(8分)如图,一次函数ykxb的图象与反比例函数y的图象交于点A(3,
8、m8),B(n,6)两点(1)求一次函数与反比例函数的解析式;(2)求AOB的面积22(10分)如图,已知ABC中,ACB90,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E(1)如果BC6,AC8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PDAB,且CE2,ED3,求cosA的值;(3)联结PD,如果BP22CD2,且CE2,ED3,求线段PD的长23(12分)如图,点C、E、B、F在同一直线上,ACDF,ACDF,BCEF,求证:AB=DE24图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,ABC的顶点均在格点上(1)画出将ABC绕点B按
9、逆时针方向旋转90后所得到的A1BC1;(2)画出将ABC向右平移6个单位后得到的A2B2C2;(3)在(1)中,求在旋转过程中ABC扫过的面积参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】令x=0,y=6,B(0,6),等腰OBC,点C在线段OB的垂直平分线上,设C(a,3),则C (a5,3),3=3(a5)+6,解得a=4,C(4,3).故选B.点睛:掌握等腰三角形的性质、函数图像的平移.2、C【解析】根据二次根式有意义的条件可得a0,原式变形为(a),然后利用二次根式的性质得到,再把根号内化简即可【详解】解:0,a0,原式(a),故选C【点睛】本题考查的是二次根式
10、的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型3、D【解析】由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案【详解】解:MN是线段AB的垂直平分线,ADBD,ABAC10,BD+CDAD+CDAC10,BCD的周长AC+BC10+616,故选D【点睛】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用4、A【解析】观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,所以b=26=64,又因上边的数与左边
11、的数的和正好等于右边的数,所以a=11+64=75,故选B5、D【解析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y10y2y3判断出三点所在的象限,故可得出结论【详解】解:反比例函数y中k10,此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,y10y2y3,点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,x2x3x1故选:D【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键6、C【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与1
12、20cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.7、B【解析】根据二次根式的加减法则,以及二次根式的性质逐项判断即可【详解】解:=2,选项A不正确;=2,选项B正确;3=2,选项C不正确;+=3,选项D不正确故选B【点睛】本题主要考查了二次根式的加减法,以及二次根式的性质和化简,要熟练掌握,解答此题的关键是要明确:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为
13、系数相加减,根式不变8、C【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】A.被开方数含能开得尽方的因数或因式,故A不符合题意,B.被开方数含能开得尽方的因数或因式,故B不符合题意,C.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意,D.被开方数含分母,故D不符合题意.故选C【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式9、B【解析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由SABM=1SAOM并结合反比例函数系数k的几何意义得到k的值
14、【详解】根据双曲线的对称性可得:OA=OB,则SABM1SAOM1,SAOM|k|1,则k1又由于反比例函数图象位于一三象限,k0,所以k1故选B【点睛】本题主要考查了反比例函数y中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点10、A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可解:设乙骑自行车的平均速度为x千米/时,由题意得:=,故选A二、填空题(本大题共6个小题,每小题3分,共18分)11、答案不唯一,
15、如:(1,1),横坐标和纵坐标都是负数即可【解析】让横坐标、纵坐标为负数即可【详解】在第三象限内点的坐标为:(1,1)(答案不唯一)故答案为答案不唯一,如:(1,1),横坐标和纵坐标都是负数即可12、【解析】利用勾股定理求出AB,再证明OC=OA=OD,推出OCB=ODC,可得tanOCB=tanODC=,由此即可解决问题.【详解】在RtABC中,AC=4,BC=3,ACB=90,AB=5,四边形ABDE是菱形,AB=BD=5,OA=OD,OC=OA=OD,OCB=ODC,tanOCB=tanODC=,故答案为【点睛】本题考查菱形的性质、勾股定理、直角三角形斜边中线的性质、锐角三角函数等知识,
16、解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型13、1【解析】设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【详解】设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(1,0)在抛物线上,解得:,抛物线的解析式为:y=x2+2.4,菜农的身高为1.8m,即y=1.8,则1.8=x2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米,故答案为114、1【解析】根据勾股定理可求OC的长,根据题意可
17、得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解【详解】连接OC在扇形AOB中AOB90,正方形CDEF的顶点C是弧AB的中点,COD45,OCCD1 ,CDOD1,阴影部分的面积扇形BOC的面积三角形ODC的面积 111故答案为1【点睛】本题考查正方形的性质和扇形面积的计算,解题关键是得到扇形半径的长度15、y=x+1(答案不唯一)【解析】本题属于结论开放型题型,可以将函数的表达式设计为一次函数、反比例函数、二次函数的表达式答案不唯一【详解】解:所求函数表达式只要图象经过点(1,2)即可,如y=2x,y=x+1,答案不唯一.故答案可以是:y=x+1(答案不唯一)
18、.【点睛】本题考查函数,解题的关键是清楚几种函数的一般式.16、1【解析】试题分析:首先进行通分,然后再进行因式分解,从而进行约分得出答案原式=三、解答题(共8题,共72分)17、(1) A种钢笔每只15元 B种钢笔每只20元;(2) 方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;(3) 定价为33元或34元,最大利润是728元.【解析】(1)设A种钢笔每只x元,B种钢笔每支y元,由题意得 ,解得: ,答:A种钢笔每只15元,B种钢笔每支20元;(2)设购进A种钢笔z支,由题意得:,42.4z45,z是整数z=43,44,90-z
19、=47,或46;共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,方案二:购进A种钢笔44只,购进B种钢笔46只;(3)W=(30-20+a)(68-4a)=-4a+28a+680=-4(a-)+729,-40,W有最大值,a为正整数,当a=3,或a=4时,W最大,W最大=-4(3-)+729=728,30+a=33,或34;答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元18、(1)证明见解析;证明见解析;(2),证明见解析【解析】(1)利用矩形的性质,结合已知条件可证PMNPDF,则可证得结论;由勾股定理可求得DM=DP,利用可求得MN=DF,则可证得
20、结论;(2)过点P作PM1PD,PM1交AD边于点M1,则可证得PM1NPDF,则可证得M1N=DF,同(1)的方法可证得结论【详解】解:(1)四边形ABCD是矩形,ADC=90又DE平分ADC,ADE=EDC=45;PMPD,DMP=45,DP=MPPMPD,PFPN,MPN+NPD=NPD+DPF=90,MPN=DPF在PMN和PDF中, ,PMNPDF(ASA),PN=PF,MN=DF;PMPD,DP=MP,DM2=DP2+MP2=2DP2,DM=DP又DM=DN+MN,且由可得MN=DF,DM=DN+DF,DF+DN=DP;(2)理由如下: 过点P作PM1PD,PM1交AD边于点M1,
21、如图,四边形ABCD是矩形,ADC=90又DE平分ADC,ADE=EDC=45;PM1PD,DM1P=45,DP=M1P,PDF=PM1N=135,同(1)可知M1PN=DPF在PM1N和PDF中,PM1NPDF(ASA),M1N=DF,由勾股定理可得:=DP2+M1P2=2DP2,DM1DPDM1=DNM1N,M1N=DF,DM1=DNDF,DNDF=DP【点睛】本题为四边形的综合应用,涉及矩形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识在每个问题中,构造全等三角形是解题的关键,注意勾股定理的应用本题考查了知识点较多,综合性较强,难度适中19、(1)k= 5;见解析,
22、由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2);0a1或a5【解析】(1)求出直线的解析式,利用待定系数法即可解决问题;如图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)求出A,B两点坐标,利用待定系数法即可解决问题;分两种情形求出PAC的面积24时a的值,即可判断【详解】(1),直线的解析式为,点B在直线上,纵坐标为,解得x2,;如下图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)点在上,k5,四边形ABCD是矩形,OAOBOCOD,A,B关于直线yx对称,则有:,解得;如下图,当点P在点A的右侧时,作点C关于
23、y轴的对称点C,连接AC,AC,PC,PC,PAA,C关于原点对称,当时,a5或(舍弃),当点P在点A的左侧时,同法可得a1,满足条件的a的范围为或【点睛】本题属于反比例函数与一次函数的综合问题,熟练掌握待定系数法解函数解析式以及交点坐标的求法是解决本题的关键.20、(1)购买A型学习用品400件,B型学习用品600件(2)最多购买B型学习用品1件【解析】(1)设购买A型学习用品x件,B型学习用品y件,就有x+y=1000,20 x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论(2)设最多可以购买B型产品a件,则A型产品(1000a)件,根据这批学习用品的钱不超过210元建
24、立不等式求出其解即可【详解】解:(1)设购买A型学习用品x件,B型学习用品y件,由题意,得,解得:答:购买A型学习用品400件,B型学习用品600件(2)设最多可以购买B型产品a件,则A型产品(1000a)件,由题意,得20(1000a)+30a210,解得:a1答:最多购买B型学习用品1件21、(1)y=-,y=-2x-4(2)1【解析】(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解【详解】(1)将A(3,m+1)代入反比例函数y=得,=m+1,解得m=6,m+1=6+1=2,所以,点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x4;(2)设AB与x轴相交于点C,令2x4=0解得x=2,所以,点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 在线监测设备运行维护合同
- 全新二零二四年度自行车旅游项目合作合同2篇
- 房地产经纪业经纪人培训教程(2024版)知识产权保护合同3篇
- 临时用电施工合同
- 结缔组织病的临床护理
- 2024年度校企合作研发中心合同
- 2024年度农田水利人工挖孔桩劳务合同2篇
- 2024年度山砂买卖合同:买方支付与交付义务规定2篇
- 耳廓变大的临床护理
- 外阴良性肿瘤的临床护理
- 现代艺术体系1951克里斯特勒
- 高一分文理科语文第一课
- 青春期多囊卵巢综合征诊治共识.ppt
- 施工标准化措施
- 维宏系统百问汇总整编
- 深圳市福田区大学生实习基地实习协议.doc
- 商品交易信息管理系统
- (完整版)风电开发协议-分散式风电
- 无机材料学报投稿模板
- (完整版)企业常年法律顾问服务方案
- 植物蛋白肽项目可行性研究报告立项申请
评论
0/150
提交评论