利用matlab求解圆柱内稳定温度分布_第1页
利用matlab求解圆柱内稳定温度分布_第2页
利用matlab求解圆柱内稳定温度分布_第3页
利用matlab求解圆柱内稳定温度分布_第4页
利用matlab求解圆柱内稳定温度分布_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数学物理方法论文(圆柱体齐次边界条件以及matlab的可视化)学院:信息院年级:2011级班级:通信一班姓名:*、应用背景:现在由于公寓楼采用集体供暖的措施,需要在地下铺设圆柱形 长管道,而对于管道的半径选取需要进行一定的计算,才能使得热水在 传送过程中不会因温度过低而达不到用户的要求。对于以上的问题,我们可以简化到应用数学中来解决。二、简化例题:若一供暖公司采用的运输管道为标准圆柱体,其半径为P。,长 为L,设管入口有均匀分布的强度为q。的热流流入,出口有相同的 热流流出,管道侧面保持温度为0C。求解管道内的稳恒温度。三、例题解答:数故解:因为上下底非齐次边界的非齐次项是常数故可较易化成齐

2、次边界。这样本征值问题就变成傅里叶级数本征问题而不是贝塞尔 函数本征问题,同时系数的求解也较为简单。q令 V 1 = -kQZ则v的定解问题为:A 2V = 0=0Vz z=L=0z=0p=p 0忍分离变数得到的本征值问题为:“Z+h 2 Z = 0=0z = L解得 h=l=0,1,2)小Z - A cos l z问题在柱内的有限解为:v(p,z)=84 An cos=0由初始条件,得n冗-cos zL8 AIn 0 n=0则有将上式右端展为傅里叶余弦级数,LI (n;% L ) 4 牛z - COS 罕改2q0L k In兀p0kL2 nnz L nz Ic o-+z-s i-n- IL

3、nn L 011)一】Lk F000,G = 2m但不等于0 ), (n = 2m +1)k兀 2n21 mp ;L)00;,A =j L - q0 zdz =-0 L 0 kq L 4q L -.V = - % + :0 ZIkTm=0(2m +1)丸pk L 7(2m +1_丸pk 0 7(2m +1I02m +1丸zL+v四、以上问题的Matlab的可视化:建立圆柱体:t=linspace(-pi,pi,200);y=linspace(0,4,200);T,Y=meshgrid(t,y);X=sin(T);Z=cos(T);mesh(X,Y,Z);axis equal由于本题中需要四维的

4、数学建模(三维立体图形,再加一维的 温度坐标),对于专业知识要求较高,以现有的知识水平还无法对四 维进行分析求解,因此采用三维坐标(二维管道的横截面,再加一维 的平面温度分布),进行求解。在此的简略,还望老师谅解! 对于二维平面的温度分析如下:(利用菜单命令进行仿真)第一步:在matlab中进入GUI界面,在Options菜单下选择Grid命令,打开栅格,然后绘制平面图形。第二步:选择Boundary菜单中的Boundary Mode命令,进入边界模式。单击 Boundary菜单中的Specify BoundaryConditions对话框,输入边界条件,本体为全部边界条件为齐次Dirichl

5、et条件。第三步:选择PDE Mode命令,进入PDE模式,打开PDESecification选项,设置方程类型。第四步:选择Mesh菜单中的Initialize Mesh命令,进行网格剖 分。选择Refine Mesh命令,使网格密集化。田。任 2PDE 瓯:=遇促Generic Scalar;X: 1.491Y: -0.917Set formula:同0.80.60.40.2-0.2-0 4-0.6-0.8-1L-1.5-1! 5 5-:. :-0.50.51.5ExitInfo: R&finedl mesh consists of S769 nod&s and 17280 triangl&s.第五步:选择Solve菜单中Solve PDE,显示第六步:单击Plot菜单中Parameter选项,进行对话框内的勾选,可以显示等值线图和矢量场图。第七步:单击Plot菜单中Parameter选项,进行对话框内的勾 选,可以显示三维图形解。ColorHeight五、本课题总结:通过本次的实验练习,我对于边界条件的认识有了进一步的掌 握,感受到了数学物理方法的实际应用性,对于生活中的一些实际问 题有了新的认识层面。同时,我对于应用数学的matlab解法有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论