2022年河北省保定市级名校中考冲刺卷数学试题含解析_第1页
2022年河北省保定市级名校中考冲刺卷数学试题含解析_第2页
2022年河北省保定市级名校中考冲刺卷数学试题含解析_第3页
2022年河北省保定市级名校中考冲刺卷数学试题含解析_第4页
2022年河北省保定市级名校中考冲刺卷数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1不等式的解集在数轴上表示正确的是( )ABCD2已知BAC=45。,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的O与射线AC有公共点,那么x的取值范围是( )A0 x1B1xC0 xDx

2、3下列各数:1.414,0,其中是无理数的为( )A1.414BCD04夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元A+4 B9 C4 D+95据统计,第22届冬季奥林匹克运动会的电视转播时间长达88000小时,社交网站和国际奥委会官方网站也创下冬奥会收看率纪录用科学记数法表示88000为()A0.88105 B8.8104 C8.8105 D8.81066在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )Ak1Bk0Ck1Dk17将弧长为2cm、圆心角为120的扇形围成一个圆锥的侧面,则这个圆锥的高是()A cmB2 cmC2cmD

3、cm8已知O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A30B60C30或150D60或1209已知ab=1,则a3a2b+b22ab的值为()A2B1C1D210如图,在中,点在以斜边为直径的半圆上,点是的三等分点,当点沿着半圆,从点运动到点时,点运动的路径长为( )A或B或C或D或二、填空题(共7小题,每小题3分,满分21分)11若正多边形的一个外角是45,则该正多边形的边数是_.12ABC的顶点都在方格纸的格点上,则sinA_ 13如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,那么_14如图,正方形ABCD的边长为2,分别以A

4、、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为_15如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是_ 16函数y= 中,自变量x的取值范围是 _17在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_三、解答题(共7小题,满分69分)18(10分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C求双曲线解析式;点P在x轴上,如果ACP的面积为5,求点P的坐标.19(5分)先化简,再求值:(x3)(1),其中x=120(8分)爸爸和小芳驾车去郊外登山,欣赏美丽的达子香(兴安杜鹃),到了

5、山下,爸爸让小芳先出发6min,然后他再追赶,待爸爸出发24min时,妈妈来电话,有急事,要求立即回去于是爸爸和小芳马上按原路下山返回(中间接电话所用时间不计),二人返回山下的时间相差4min,假设小芳和爸爸各自上、下山的速度是均匀的,登山过程中小芳和爸爸之间的距离s(单位:m)关于小芳出发时间t(单位:min)的函数图象如图,请结合图象信息解答下列问题:(1)小芳和爸爸上山时的速度各是多少?(2)求出爸爸下山时CD段的函数解析式;(3)因山势特点所致,二人相距超过120m就互相看不见,求二人互相看不见的时间有多少分钟?21(10分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例

6、函数 (x0)的图象交于点B(2,n),过点B作BCx轴于点C,点D(33n,1)是该反比例函数图象上一点求m的值;若DBC=ABC,求一次函数y=kx+b的表达式22(10分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(3,4),与y轴交于点C(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EBBC上的一个动点,当点P在线段BC上时,连接EP,若EPBC,请直接写出线段BP与线段AE的关系;过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M,

7、如果点M恰好在坐标轴上,请直接写出此时点P的坐标23(12分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项)为了解学生喜爱哪种社团活动,学校做了一次抽样调查根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?24(14分)正方形ABCD中,点P为直线AB上一个动点(不与点A,B重合),连接DP,将DP绕点P旋转9

8、0得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N问题出现:(1)当点P在线段AB上时,如图1,线段AD,AP,DM之间的数量关系为 ;题探究:(2)当点P在线段BA的延长线上时,如图2,线段AD,AP,DM之间的数量关系为 ;当点P在线段AB的延长线上时,如图3,请写出线段AD,AP,DM之间的数量关系并证明;问题拓展:(3)在(1)(2)的条件下,若AP=,DEM=15,则DM= 参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据不等式的性质:先移项,再合并即可解得不等式的解集,最后将解集表示在数轴上即可【详解】解:解:移项得,x3

9、-2,合并得,x1;在数轴上表示应包括1和它左边的部分,如下:;故选:B【点睛】本题考查了一元一次不等式的解集的求法及在数轴上表示不等式的解集,注意数轴上包括的端点实心点表示2、C【解析】如下图,设O与射线AC相切于点D,连接OD,ADO=90,BAC=45,ADO是等腰直角三角形,AD=DO=1,OA=,此时O与射线AC有唯一公共点点D,若O再向右移动,则O与射线AC就没有公共点了,x的取值范围是.故选C.3、B【解析】试题分析:根据无理数的定义可得是无理数故答案选B.考点:无理数的定义.4、B【解析】收入和支出是两个相反的概念,故两个数字分别为正数和负数.【详解】收入13元记为13元,那么

10、支出9元记作9元【点睛】本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.5、B【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0).因此,88000一共5位,88000=8.88104. 故选B.考点:科学记数法.6、A【解析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k10,解可得k

11、的取值范围【详解】解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k10,解得k1故选A【点评】本题考查了反比例函数的性质:当k0时,图象分别位于第一、三象限;当k0时,图象分别位于第二、四象限当k0时,在同一个象限内,y随x的增大而减小;当k0时,在同一个象限,y随x的增大而增大7、B【解析】由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.【详解】解:设圆锥母线长为Rcm,则2=,解得R=3cm;设圆锥底面半径为rcm,则2=2r,解得r=1cm.由勾股定理可得圆锥的高为=2cm.故选择B.【点睛】本题考查了圆锥的概念和弧长

12、的计算.8、D【解析】【分析】由图可知,OA=10,OD=1根据特殊角的三角函数值求出AOB的度数,再根据圆周定理求出C的度数,再根据圆内接四边形的性质求出E的度数即可【详解】由图可知,OA=10,OD=1,在RtOAD中,OA=10,OD=1,AD=,tan1=,1=60,同理可得2=60,AOB=1+2=60+60=120,C=60,E=180-60=120,即弦AB所对的圆周角的度数是60或120,故选D【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.9、C【解析】先将前两项提公因式,然后把ab=1代入,化简后再与后

13、两项结合进行分解因式,最后再代入计算【详解】a3a2b+b22ab=a2(ab)+b22ab=a2+b22ab=(ab)2=1故选C【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合10、A【解析】根据平行线的性质及圆周角定理的推论得出点M的轨迹是以EF为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论【详解】当点D与B重合时,M与F重合,当点D与A重合时,M与E重合,连接BD,FM,AD,EM, AB是直径 即 点M的轨迹是以EF为直径的半圆, 以EF为直径的圆的半径为1点M运动的路径长为 当 时,同理可得点M运动的路径长

14、为故选:A【点睛】本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、1;【解析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用36045可求得边数【详解】多边形外角和是360度,正多边形的一个外角是45,36045=1即该正多边形的边数是1【点睛】本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等)12、【解析】在直角ABD中利用勾股定理求得AD的长,然后利用正弦的定义求解【详解】在直角ABD中,BD=1,AB=2,则AD=,则sinA=

15、=.故答案是:.13、【解析】由直线abc,根据平行线分线段成比例定理,即可得,又由AC3,CE5,DF4,即可求得BD的长.【详解】解:由直线abc,根据平行线分线段成比例定理,即可得,又由AC3,CE5,DF4可得:解得:BD=.故答案为.【点睛】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.14、2【解析】过点F作FEAD于点E,则AE=AD=AF,故AFE=BAF=30,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADFSADF可得出其面积,再根据S阴影=2(S扇形BAFS弓形AF)即可得出结论【详解】如图所示,过点F作FEAD于点E,正方形A

16、BCD的边长为2,AE=AD=AF=1,AFE=BAF=30,EF=S弓形AF=S扇形ADFSADF=, S阴影=2(S扇形BAFS弓形AF)=2=2()=【点睛】本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力15、10.5【解析】先证AEBABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BEAC,DCACBE/DC,AEBADC,即:,CD10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.16、x【解析】该函数是分式,分式有意义的条件是分母不等于1,故分母x11,解

17、得x的范围【详解】解:根据分式有意义的条件得:2x+31解得:故答案为【点睛】本题考查了函数自变量取值范围的求法要使得本题函数式子有意义,必须满足分母不等于117、 【解析】根据随机事件概率大小的求法,找准两点:符合条件的情况数目;全部情况的总数二者的比值就是其发生的概率的大小【详解】解:在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是故答案为:【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=三、解答题(共7小题,满分69分)18、(1);(2

18、)(,0)或【解析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出ACP的面积,可得到关于x的方程,解方程可求得P点的坐标【详解】解:(1)把A(2,n)代入直线解析式得:n=3, A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=(2)对于直线y=x+2,令y=0,得到x=-4,即C(-4,0)设P(x,0),可得PC=|x+4|ACP面积为5,|x+4|3=5,即|x+4|=2,解得:x=-或x=-,则P坐标为或19、x+1,2 【解析】先将括号内

19、的分式通分,再将乘方转化为乘法,约分,最后代入数值求解即可.【详解】原式=(x2)()=(x2)=(x2)=x+1,当x=1时,原式=1+1=2【点睛】本题考查了整式的混合运算-化简求值,解题的关键是熟练的掌握整式的混合运算法则.20、(1)小芳上山的速度为20m/min,爸爸上山的速度为28m/min;(2)爸爸下山时CD段的函数解析式为y=12x288(24x40);(3)二人互相看不见的时间有7.1分钟【解析】分析:(1)根据速度=路程时间可求出小芳上山的速度;根据速度=路程时间+小芳的速度可求出爸爸上山的速度;(2)根据爸爸及小芳的速度结合点C的横坐标(6+24=30),可得出点C的坐

20、标,由点D的横坐标比点E少4可得出点D的坐标,再根据点C、D的坐标利用待定系数法可求出CD段的函数解析式;(3)根据点D、E的坐标利用待定系数法可求出DE段的函数解析式,分别求出CD、DE段纵坐标大于120时x的取值范围,结合两个时间段即可求出结论详解:(1)小芳上山的速度为1206=20(m/min),爸爸上山的速度为120(216)+20=28(m/min)答:小芳上山的速度为20m/min,爸爸上山的速度为28m/min(2)(2820)(24+621)=72(m),点C的坐标为(30,72);二人返回山下的时间相差4min,444=40(min),点D的坐标为(40,192)设爸爸下山

21、时CD段的函数解析式为y=kx+b,将C(30,72)、D(40,192)代入y=kx+b,解得:答:爸爸下山时CD段的函数解析式为y=12x288(24x40)(3)设DE段的函数解析式为y=mx+n,将D(40,192)、E(44,0)代入y=mx+n,解得:,DE段的函数解析式为y=48x+2112(40 x44)当y=12x288120时,34x40;当y=48x+2112120时,40 x41.141.134=7.1(min)答:二人互相看不见的时间有7.1分钟点睛:本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据数量关系,

22、列式计算;(2)根据点C、D的坐标,利用待定系数法求出CD段的函数解析式;(3)利用一次函数图象上点的坐标特征分别求出CD、DE段纵坐标大于120时x的取值范围21、(1)-6;(2)【解析】(1)由点B(2,n)、D(33n,1)在反比例函数(x0)的图象上可得2n=33n,即可得出答案;(2)由(1)得出B、D的坐标,作DEBC延长DE交AB于点F,证DBEFBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得【详解】解:(1)点B(2,n)、D(33n,1)在反比例函数(x0)的图象上,解得:;(2)由(1)知反比例函数解析式为,n=3,点B(2,3)、D(6,1),如图

23、,过点D作DEBC于点E,延长DE交AB于点F,在DBE和FBE中,DBE=FBE,BE=BE,BED=BEF=90,DBEFBE(ASA),DE=FE=4,点F(2,1),将点B(2,3)、F(2,1)代入y=kx+b,解得:,【点睛】本题主要考查了反比例函数与一次函数的综合问题,解题的关键是能借助全等三角形确定一些相关线段的长22、(1)y=310 x2+1110 x+2;(2)y=2x+2;(3)线段BP与线段AE的关系是相互垂直;点P的坐标为:(4+23,8+43)或(423,843)或(0,4)或(245,4)【解析】(1)将A(5,0)和点B(3,4)代入y=ax2+bx+2,即可

24、求解;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;(3)AE直线的斜率kAE=2,而直线BC斜率的kAE=2即可求解;考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM=PM即可求解【详解】(1)将A(5,0)和点B(3,4)代入y=ax2+bx+2,解得:a=,b=,故函数的表达式为y=x2+x+2;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,解得:k=2,b=2,故:直线BC的函数表达式为y=2x+2,(3)E是点B关于y轴的对称点,E坐标为(3,4),则AE直线的斜率kAE=2,而直线BC斜率的kAE=2,AEBC,而E

25、PBC,BPAE而BP=AE,线段BP与线段AE的关系是相互垂直;设点P的横坐标为m,当P点在线段BC上时,P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,直线MMBC,kMM=,直线MM的方程为:y=x+(2+m),则M坐标为(0,2+m)或(4+m,0),由题意得:PM=PM=2m,PM2=42+m2=(2m)2,此式不成立,或PM2=m2+(2m+2)2=(2m)2,解得:m=42,故点P的坐标为(42,84);当P点在线段BE上时,点P坐标为(m,4),点M坐标为(m,2),则PM=6,直线MM的方程不变,为y=x+(2+m),则M坐标为(0,2+m)或(4+m,0),PM

26、2=m2+(6+m)2=(2m)2,解得:m=0,或;或PM2=42+42=(6)2,无解;故点P的坐标为(0,4)或(,4);综上所述:点P的坐标为:(4+2,8+4)或(42,84)或(0,4)或(,4)【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系23、(1)200;(2)108;(3)答案见解析;(4)600【解析】试题分析:(1)根据体育人数80人,占40%,可以求出总人数(2)根据圆心角=百分比360即可解决问题(3)求出艺术类、其它类社团人数,即可画出条形图(4)用样本百分比估计总体百分比即可解决问题试题解析:(1)8040%=200(人)此次共调查200人(2)360=108文学社团在扇形统计图中所占圆心角的度数为108(3)补全如图,(4)150040%=600(人)估计该校喜欢体育类社团的学生有600人【点睛】此题主要考查了条形图与统计表以及扇形图的综合应用,由条形图与扇形图结合得出调查的总人数是解决问题的关键,学会用样本估计总体的思想,属于中考常考题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论