2022年合肥市瑶海区重点达标名校中考数学猜题卷含解析_第1页
2022年合肥市瑶海区重点达标名校中考数学猜题卷含解析_第2页
2022年合肥市瑶海区重点达标名校中考数学猜题卷含解析_第3页
2022年合肥市瑶海区重点达标名校中考数学猜题卷含解析_第4页
2022年合肥市瑶海区重点达标名校中考数学猜题卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,已知,则的度数为( )ABCD2如图,点A所表示的数的绝对值是()A3B3CD3如图,已知菱形ABCD,B=60,AB=4,则以AC为边长的正方形ACEF的周长为()A16B12C24D184如图,PA和PB是O的切线,点A和B是切

2、点,AC是O的直径,已知P40,则ACB的大小是( )A60B65C70D755如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )ABCD6一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数从左面看到的这个几何体的形状图的是()ABCD7如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A5B10C10D158如图,抛物线y=ax2+bx+c(a0)过点

3、(1,0)和点(0,2),且顶点在第三象限,设P=ab+c,则P的取值范围是( )A4P0B4P2C2P0D1P09如图,四边形ABCD是菱形,A=60,AB=2,扇形BEF的半径为2,圆心角为60,则图中阴影部分的面积是( )ABCD10如图,在ABC中,ACB=90, ABC=60, BD平分ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A3.5B3C4D4.5二、填空题(本大题共6个小题,每小题3分,共18分)11若反比例函数y的图象与一次函数yx+k的图象有一个交点为(m,4),则这个反比例函数的表达式为_12若a:b=1:3,b:c=2:5,则a:c=_.13如图,四边

4、形ABCD是菱形,DAB50,对角线AC,BD相交于点O,DHAB于H,连接OH,则DHO_度14比较大小:_3(填“”或“”或“”)15如图,在四边形ABCD中,ADBC,AB=CD且AB与CD不平行,AD=2,BCD=60,对角线CA平分BCD,E,F分别是底边AD,BC的中点,连接EF,点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为_16将161000用科学记数法表示为1.6110n,则n的值为_三、解答题(共8题,共72分)17(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD求证:

5、AB=AF;若AG=AB,BCD=120,判断四边形ACDF的形状,并证明你的结论18(8分)已知:在O中,弦AB=AC,AD是O的直径求证:BD=CD19(8分)如图,在四边形中,为的中点,于点,求的度数20(8分)如图,已知AC和BD相交于点O,且ABDC,OA=OB求证:OC=OD21(8分)如图,已知抛物线y=ax2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0)(1)求抛物线的解析式及其顶点D的坐标;(2)如果点P(p,0)是x轴上的一个动点,则当|PCPD|取得最大值时,求p的值;(3)能否在抛物线第一象限的图象上找到一点Q,使QBC的面积最大,若能,请求出点Q的坐标

6、;若不能,请说明理由22(10分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A非常了解,B比较了解,C基本了解,D不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、

7、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率23(12分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜这个游戏对双方公平吗?请列表格或画树状图说明理由24如图1,在RtABC中,ABC=90,BA=BC,直线MN是过点A的直线CDMN于点D,连接BD(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系经过观察思考,小明出一种思路:如图1,过点B作BEBD,交

8、MN于点E,进而得出:DC+AD=BD(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当ABD面积取得最大值时,若CD长为1,请直接写BD的长参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】分析:根据AOC和BOC的度数得出AOB的度数,从而得出答案详解:AOC=70, BOC=30, AOB=7030=40,AOD=AOB+BOD=40+70=110,故选B点睛:本题主要考查的是角度的计算问题,属于基础题型理解各角之间的关系是解题的关键2、A【解析】根据负数的绝对值是其相反数

9、解答即可【详解】|-3|=3,故选A【点睛】此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答3、A【解析】由菱形ABCD,B=60,易证得ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长【详解】解:四边形ABCD是菱形,AB=BCB=60,ABC是等边三角形,AC=AB=BC=4,以AC为边长的正方形ACEF的周长为:4AC=1故选A【点睛】本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质此题难度不大,注意掌握数形结合思想的应用4、C【解析】试题分析:连接OB,根据PA、PB为切线可得:OAP=OBP=90,根据四边形AOBP的内角和定

10、理可得AOB=140,OC=OB,则C=OBC,根据AOB为OBC的外角可得:ACB=1402=70.考点:切线的性质、三角形外角的性质、圆的基本性质.5、C【解析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:故选:C【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键6、B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从

11、左面看有1列,每列小正方形数目分别为1,4,1据此可画出图形详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B点睛:此题主要考查了几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字7、B【解析】作点E关于BC的对称点E,连接EG交BC于点F,此时四边形EFGH周长取最小值,过点G作GGAB于点G,如图所示,AE=CG,BE=BE,EG=AB=10,GG=AD=5,EG=,C

12、四边形EFGH=2EG=10,故选B【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键8、A【解析】解:二次函数的图象开口向上,a1对称轴在y轴的左边,1b1图象与y轴的交点坐标是(1,2),过(1,1)点,代入得:a+b2=1a=2b,b=2ay=ax2+(2a)x2把x=1代入得:y=a(2a)2=2a3,b1,b=2a1a2a1,1a212a332a31,即3P1故选A【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键9、B【解析】根据菱形的性质得出DAB是等边三角形,进而利用全等三角形的判定得出ABGDBH,得出四边形G

13、BHD的面积等于ABD的面积,进而求出即可【详解】连接BD,四边形ABCD是菱形,A=60,ADC=120,1=2=60,DAB是等边三角形,AB=2,ABD的高为,扇形BEF的半径为2,圆心角为60,4+5=60,3+5=60,3=4,设AD、BE相交于点G,设BF、DC相交于点H,在ABG和DBH中,ABGDBH(ASA),四边形GBHD的面积等于ABD的面积,图中阴影部分的面积是:S扇形EBF-SABD=故选B10、B【解析】解:ACB90,ABC60,A10,BD平分ABC,ABDABC10,AABD,BDAD6,在RtBCD中,P点是BD的中点,CPBD1故选B二、填空题(本大题共6

14、个小题,每小题3分,共18分)11、y【解析】把交点坐标代入两个解析式组成方程组,解方程组求得k,即可求得反比例函数的解析式【详解】解:反比例函数y的图象与一次函数yx+k的图象有一个交点为(m,4),解得k5,反比例函数的表达式为y,故答案为y【点睛】本题考查了反比例函数与一次函数的交点问题,根据图象上点的坐标特征得出方程组是解题的关键12、21【解析】分析:已知a、b两数的比为1:3,根据比的基本性质,a、b两数的比1:3=(12):(32)=2:6;而b、c的比为:2:5=(23):(53)=6:1;,所以a、c两数的比为2:1详解:a:b=1:3=(12):(32)=2:6;b:c=2

15、:5=(23):(53)=6:1;,所以a:c=2:1;故答案为2:1点睛:本题主要考查比的基本性质的实际应用,如果已知甲乙、乙丙两数的比,那么可以根据比的基本性质求出任意两数的比13、1【解析】试题分析:四边形ABCD是菱形,OD=OB,COD=90,DHAB,OH=BD=OB,OHB=OBH,又ABCD,OBH=ODC,在RtCOD中,ODC+DCO=90,在RtDHB中,DHO+OHB=90,DHO=DCO=50=1.考点:菱形的性质14、.【解析】先利用估值的方法先得到3.4,再进行比较即可.【详解】解:3.4,3.43.3.故答案为:.【点睛】本题考查了实数的比较大小,对进行合理估值

16、是解题的关键.15、2【解析】将PA+PB转化为PA+PC的值即可求出最小值【详解】解:E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,B点关于EF的对称点C点,AC即为PA+PB的最小值,BCD=, 对角线AC平分BCD,ABC=, ZBCA=,BAC=,AD=2,PA+PB的最小值=.故答案为: .【点睛】求PA+PB的最小值, PAPB不能直接求, 可考虑转化PAP的值,从而找出其最小值求解.16、5【解析】【科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,

17、n是正数;当原数的绝对值1时,n是负数【详解】161000=1.61105.n=5.故答案为5.【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值三、解答题(共8题,共72分)17、(1)证明见解析;(2)结论:四边形ACDF是矩形理由见解析.【解析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形根据对角线相等的平行四边形是矩形判断即可;【详解】(1)证明:四边形ABCD是平行四边形,BECD,AB=CD,AFC=DCG,GA=GD,AGF=CGD,AGFDGC,AF=C

18、D,AB=CF(2)解:结论:四边形ACDF是矩形理由:AF=CD,AFCD,四边形ACDF是平行四边形,四边形ABCD是平行四边形,BAD=BCD=120,FAG=60,AB=AG=AF,AFG是等边三角形,AG=GF,AGFDGC,FG=CG,AG=GD,AD=CF,四边形ACDF是矩形【点睛】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.18、证明见解析【解析】根据AB=AC,得到,于是得到ADB=ADC,根据AD是O的直径,得到B=C=90,根据三角形的内角和定理得到BAD=DAC,于是得到结论【详解】证明:AB=AC

19、,ADB=ADC,AD是O的直径,B=C=90,BAD=DAC,BD=CD【点睛】本题考查了圆周角定理,熟记圆周角定理是解题的关键19、【解析】连接,根据线段垂直平分线的性质得到,根据等腰三角形的性质、三角形内角和定理计算即可【详解】连接,为的中点,于点,【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键20、证明见解析.【解析】试题分析:首先根据等边对等角可得A=B,再由DCAB,可得D=A,C=B,进而得到C=D,根据等角对等边可得CO=DO试题解析:证明:ABCDAD BCOA=OBABCDOC

20、OD考点:等腰三角形的性质与判定,平行线的性质21、 (1) y=(x1)2+9 ,D(1,9); (2)p=1;(3)存在点Q(2,1)使QBC的面积最大【解析】分析:(1)把点B的坐标代入y=ax2+2x+1求得a的值,即可得到该抛物线的解析式,再把所得解析式配方化为顶点式,即可得到抛物线顶点D的坐标;(2)由题意可知点P在直线CD上时,|PCPD|取得最大值,因此,求得点C的坐标,再求出直CD的解析式,即可求得符合条件的点P的坐标,从而得到p的值;(3)由(1)中所得抛物线的解析式设点Q的坐标为(m,m2+2m+1)(0m4),然后用含m的代数式表达出BCQ的面积,并将所得表达式配方化为

21、顶点式即可求得对应点Q的坐标.详解:(1)抛物线y=ax2+2x+1经过点B(4,0),16a+1+1=0,a=1,抛物线的解析式为y=x2+2x+1=(x1)2+9,D(1,9);(2)当x=0时,y=1,C(0,1)设直线CD的解析式为y=kx+b将点C、D的坐标代入得:,解得:k=1,b=1,直线CD的解析式为y=x+1当y=0时,x+1=0,解得:x=1,直线CD与x轴的交点坐标为(1,0)当P在直线CD上时,|PCPD|取得最大值,p=1;(3)存在,理由:如图,由(2)知,C(0,1),B(4,0),直线BC的解析式为y=2x+1,过点Q作QEy轴交BC于E,设Q(m,m2+2m+

22、1)(0m4),则点E的坐标为:(m,2m+1),EQ=m2+2m+1(2m+1)=m2+4m,SQBC=(m2+4m)4=2(m2)2+1,m=2时,SQBC最大,此时点Q的坐标为:(2,1)点睛:(1)解第2小题时,知道当点P在直线CD上时,|PCPD|的值最大,是找到解题思路的关键;(2)解第3小题的关键是设出点Q的坐标(m,m2+2m+1)(0m4),并结合点B、C的坐标把BCQ的面积用含m的代数式表达出来.22、(1)60、90;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名学生同时被选中的概率为【解析】【分析】(1)用A的人数以

23、及所占的百分比就可以求出调查的总人数,用C的人数除以调查的总人数后再乘以360度即可得;(2)根据D的百分比求出D的人数,继而求出B的人数,即可补全条形统计图;(3)用“非常了解”所占的比例乘以800即可求得;(4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.【详解】(1)本次调查的学生总人数为2440%=60人,扇形统计图中C所对应扇形的圆心角度数是360=90, 故答案为60、90;(2)D类型人数为605%=3,则B类型人数为60(24+15+3)=18,补全条形图如下:(3)估计全校学生中对这些交通法规“非常了解”的有80040%=320名;(4)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为【点睛】本题考查了条形统计图、扇形统计图、列表法或树状图法求概率、用样本估计总体等,读懂统计图,从不同的统计图中找到必要的有关联的信息进行解题是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论