




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1总体由编号01,,02,19,20的20个个体组成利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为78166572080263140702436997280
2、19832049234493582003623486969387481A08B07C02D012函数的最大值为,最小正周期为,则有序数对为( )ABCD3抛物线y2=ax(a0)的准线与双曲线C:x28-y24=1的两条渐近线所围成的三角形面积为22,则a的值为 ( )A8B6C4D24设、分别是定义在上的奇函数和偶函数,且,则( )AB0C1D35我国古代数学著作九章算术中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k的值为( )A45
3、B60C75D1006二项式展开式中,项的系数为( )ABCD7已知等比数列的前项和为,若,且公比为2,则与的关系正确的是( )ABCD8设为等差数列的前项和,若,则ABCD9 “”是“函数的图象关于直线对称”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件10设函数,则使得成立的的取值范围是( )ABCD11已知三棱锥的体积为2,是边长为2的等边三角形,且三棱锥的外接球的球心恰好是中点,则球的表面积为( )ABCD12已知函数的图象如图所示,则可以为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13根据如图所示的伪代码,若输出的的值为,则输入的的值为_
4、.14若且时,不等式恒成立,则实数a的取值范围为_15的展开式中,的系数为_.16将底面直径为4,高为的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在ABC中,角A,B,C的对边分别为a,b,c,已知,()求的大小;()若,求面积的最大值18(12分)如图,在四棱锥中,平面ABCD平面PAD,E是PD的中点证明:;设,点M在线段PC上且异面直线BM与CE所成角的余弦值为,求二面角的余弦值19(12分)已知数列满足,且.(1)求证:数列为等比数列,并求出数列的通项公式;(2)设,求数列的前项和.20(12分)
5、已知函数.(1)当时,求曲线在点处的切线方程;(2)若在上恒成立,求的取值范围21(12分)在直角坐标系中,曲线的参数方程为:(其中为参数),直线的参数方程为(其中为参数)(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程;(2)若曲线与直线交于两点,点的坐标为,求的值.22(10分)设函数,.(1)解不等式;(2)若对任意的实数恒成立,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个
6、个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力.2B【解析】函数(为辅助角)函数的最大值为,最小正周期为故选B3A【解析】求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值【详解】抛物线y2=ax(a0)的准线为x=-a4, 双曲线C:x28-y24=1的两条渐近线为y=22x, 可得两交点为-a4,-2a8,-a4,2a8, 即有三角形的面积为12a42a4=22,解得a=8,故选A【点睛】本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题4C【解析】先
7、根据奇偶性,求出的解析式,令,即可求出。【详解】因为、分别是定义在上的奇函数和偶函数,用替换,得 ,化简得,即令,所以,故选C。【点睛】本题主要考查函数性质奇偶性的应用。5B【解析】根据程序框图中程序的功能,可以列方程计算【详解】由题意,故选:B.【点睛】本题考查程序框图,读懂程序的功能是解题关键6D【解析】写出二项式的通项公式,再分析的系数求解即可.【详解】二项式展开式的通项为,令,得,故项的系数为.故选:D【点睛】本题主要考查了二项式定理的运算,属于基础题.7C【解析】在等比数列中,由即可表示之间的关系.【详解】由题可知,等比数列中,且公比为2,故故选:C【点睛】本题考查等比数列求和公式的
8、应用,属于基础题.8C【解析】根据等差数列的性质可得,即,所以,故选C9A【解析】先求解函数的图象关于直线对称的等价条件,得到,分析即得解.【详解】若函数的图象关于直线对称,则,解得,故“”是“函数的图象关于直线对称”的充分不必要条件故选:A【点睛】本题考查了充分不必要条件的判断,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题.10B【解析】由奇偶性定义可判断出为偶函数,由单调性的性质可知在上单调递增,由此知在上单调递减,从而将所求不等式化为,解绝对值不等式求得结果.【详解】由题意知:定义域为,为偶函数,当时,在上单调递增,在上单调递减,在上单调递增,则在上单调递减,由得:,解得:或
9、,的取值范围为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式.11A【解析】根据是中点这一条件,将棱锥的高转化为球心到平面的距离,即可用勾股定理求解.【详解】解:设点到平面的距离为,因为是中点,所以到平面的距离为,三棱锥的体积,解得,作平面,垂足为的外心,所以,且,所以在中,此为球的半径,.故选:A.【点睛】本题考查球的表面积,考查点到平面的距离,属于中档题12A【解析】根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可
10、得出【详解】首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;其次,在剩下的3个选项,对其在上的零点个数进行判断, 在上无零点, 不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断, 在上单调递减, 不符合题意,排除C.故选:A【点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题二、填空题:本题共4小题,每小题5分,共20分。13【解析】算法的功能是求的值,根据输出的值,分别求出当时和当时的值即可得解【详解】解:由程序语句知:算法的功能是求的值,当时,可得:,或(舍去);当时,可得:(舍去)综上的值为:故答案为:【点睛】本
11、题考查了选择结构的程序语句,根据语句判断算法的功能是解题的关键,属于基础题14【解析】将不等式两边同时平方进行变形,然后得到对应不等式组,对的取值进行分类,将问题转化为二次函数在区间上恒正、恒负时求参数范围,列出对应不等式组,即可求解出的取值范围.【详解】因为,所以,所以,所以,所以或,当时,对且不成立,当时,取,显然不满足,所以,所以,解得;当时,取,显然不满足,所以,所以,解得,综上可得的取值范围是:.故答案为:.【点睛】本题考查根据不等式恒成立求解参数范围,难度较难.根据不等式恒成立求解参数范围的两种常用方法:(1)分类讨论法:分析参数的临界值,对参数分类讨论;(2)参变分离法:将参数单
12、独分离出来,再以函数的最值与参数的大小关系求解出参数范围.1516【解析】要得到的系数,只要求出二项式中的系数减去的系数的2倍即可【详解】的系数为.故答案为:16【点睛】此题考查二项式的系数,属于基础题.16【解析】由题意欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,将侧面积表示成关于的函数,再利用一元二次函数的性质求最值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,所以.,当时,的最大值为.故答案为:.【点睛】本题考查圆柱的侧面积的最值,考查函数与方程思想、转化与化归思想、,考查空间想象能力和运算求解能力,求解时注意将问题转化
13、为函数的最值问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)【解析】分析:(1)利用正弦定理以及诱导公式与和角公式,结合特殊角的三角函数值,求得角C;(2)运用向量的平方就是向量模的平方,以及向量数量积的定义,结合基本不等式,求得的最大值,再由三角形的面积公式计算即可得到所求的值.详解:(1), ()取中点,则,在中,(注:也可将两边平方)即, ,所以,当且仅当时取等号 此时,其最大值为.点睛:该题考查的是有关三角形的问题,涉及到的知识点有正弦定理,诱导公式,和角公式,向量的平方即为向量模的平方,基本不等式,三角形的面积公式,在解题的过程中,需要正确使用相关
14、的公式进行运算即可求得结果.18(1)见解析;(2)【解析】(1)由平面平面的性质定理得平面,.在中,由勾股定理得,平面,即可得;(2)以为坐标原点建立空间直角坐标系,由空间向量法和异面直线与所成角的余弦值为,得点M的坐标,从而求出二面角的余弦值.【详解】(1)平面平面,平面平面= ,所以 .由面面垂直的性质定理得平面,在中,由正弦定理可得:,即,平面,.(2)以为坐标原点建立如图所示的空间直角坐标系,则,设 ,则, , 得,而,设平面的法向量为,由可得:,令,则,取平面的法向量,则,故二面角的余弦值为.【点睛】本题考查了线线垂直的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养
15、和向量法的合理运用,属于中档题.19(1)证明见解析;(2)【解析】(1)根据题目所给递推关系式得到,由此证得数列为等比数列,并求得其通项公式.然后利用累加法求得数列的通项公式.(2)利用错位相减求和法求得数列的前项和【详解】(1)已知,则,且,则为以3为首相,3为公比的等比数列,所以,.(2)由(1)得:,可得,则即.【点睛】本小题主要考查根据递推关系式证明等比数列,考查累加法求数列的通项公式,考查错位相减求和法,属于中档题.20(1);(2)【解析】(1),对函数求导,分别求出和,即可求出在点处的切线方程;(2)对求导,分、和三种情况讨论的单调性,再结合在上恒成立,可求得的取值范围.【详解】(1)因为,所以,所以,则,故曲线在点处的切线方程为.(2)因为,所以,当时,在上恒成立,则在上单调递增,从而成立,故符合题意;当时,令,解得,即在上单调递减,则,故不符合题意;当时,在上恒成立,即在上单调递减,则,故不符合题意.综上,的取值范围为.【点睛】本题考查了曲线的切线方程的求法,考查了利用导数研究函数的单调性,考查了不等式恒成立问题,利用分类讨论是解决本题的较好方法,属于中档题.21(1)(2)5【解析】(1)首先消去参数得到曲线的普通方程,再根据,得到曲线的极坐标方程;(2)将
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甲方发三方协议合同模板
- 空调用工兼职合同协议书
- 煤油购销合同协议书模板
- 物业公司聘用协议书模板
- 离婚协议算不算一种合同
- 电厂脱硫塔采购合同范本
- 门窗修缮合同协议书范本
- 移动机器人采购合同范本
- 消防维保合同协议书模板
- 网签版技术服务合同范本
- 护理核心制度考试试卷(附答案)
- 汽车之夜活动方案
- 护理质量管理与院感感染控制
- 电气识图与CAD制图课件:常用电气元件的识图与制图
- DB 3707∕ T 6-2019 潍坊市医疗卫生行业基层党建工作标准
- 主持稿怎么写培训
- 研发项目工时管理制度
- 新生儿气漏综合征教学查房
- 会阴水肿硫酸镁湿敷专题报告
- 机修修旧利废管理制度
- 2025年学校校长公开选拔笔试试题及参考答案校长招聘考试笔试真题
评论
0/150
提交评论