版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1已知函数,若函数有三个零点,则实数的取值范围是( )ABCD2易系辞上有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( ) ABCD3若P是的充分不必要条件,则p是q的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4设i是虚数单位,若复数是纯虚数,则a的值为( )AB3C1D5在正项等比数列an中,a5-a1=15,a4-a2 =6,则a3=( )A2B4CD
3、86把函数的图象向右平移个单位长度,得到函数的图象,若函数是偶函数,则实数的最小值是( )ABCD7若集合,则下列结论正确的是( )ABCD8若函数f(x)a|2x4|(a0,a1)满足f(1),则f(x)的单调递减区间是( )A(,2B2,)C2,)D(,29地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图.
4、 根据所给信息,正确的统计结论是( )A截止到2015年中国累计装机容量达到峰值B10年来全球新增装机容量连年攀升C10年来中国新增装机容量平均超过D截止到2015年中国累计装机容量在全球累计装机容量中占比超过10的展开式中的项的系数为( )A120B80C60D4011设,则“ ”是“”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件12已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设变量,满足约束条件,则目标函数的最小值是_.14若,则的最小值为_.15已知三棱锥,是边长为
5、4的正三角形,分别是、的中点,为棱上一动点(点除外),若异面直线与所成的角为,且,则_.16如图所示,在直角梯形中,、分别是、上的点,且(如图).将四边形沿折起,连接、(如图).在折起的过程中,则下列表述: 平面;四点、可能共面;若,则平面平面;平面与平面可能垂直.其中正确的是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数,其中()当为偶函数时,求函数的极值;()若函数在区间上有两个零点,求的取值范围18(12分)已知抛物线,焦点为,直线交抛物线于两点,交抛物线的准线于点,如图所示,当直线经过焦点时,点恰好是的中点,且.(1)求抛物线的方程;(2)点是原
6、点,设直线的斜率分别是,当直线的纵截距为1时,有数列满足,设数列的前n项和为,已知存在正整数使得,求m的值.19(12分)某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:运动达人非运动达人总计男3560女26总计100(1)(i)将列联表补充完
7、整;(ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”?(2)将频率视作概率,从该公司的所有人“运动达人”中任意抽取3个用户,求抽取的用户中女用户人数的分布列及期望.附:20(12分) 2018石家庄一检已知函数(1)若,求函数的图像在点处的切线方程;(2)若函数有两个极值点,且,求证:21(12分)已知函数.(1)求曲线在点处的切线方程;(2)若对任意的,当时,都有恒成立,求最大的整数.(参考数据:)22(10分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y290相切(1)求圆的方程;(2)设直线axy+50(a0)与圆相交于A,B两点,求实数a
8、的取值范围;(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(2,4),若存在,求出实数a的值;若不存在,请说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】根据所给函数解析式,画出函数图像.结合图像,分段讨论函数的零点情况:易知为的一个零点;对于当时,由代入解析式解方程可求得零点,结合即可求得的范围;对于当时,结合导函数,结合导数的几何意义即可判断的范围.综合后可得的范围.【详解】根据题意,画出函数图像如下图所示:函数的零点,即.由图像可知,所以是的一个零点,当时,若,则,即,所以,解得;当
9、时,则,且若在时有一个零点,则,综上可得,故选:B.【点睛】本题考查了函数图像的画法,函数零点定义及应用,根据零点个数求参数的取值范围,导数的几何意义应用,属于中档题.2C【解析】先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率.【详解】所有的情况数有:种,3个数中至少有2个阳数且能构成等差数列的情况有:,共种,所以目标事件的概率.故选:C.【点睛】本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算.3B【解析】试
10、题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B考点:逻辑命题4D【解析】整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【详解】由题,因为纯虚数,所以,则,故选:D【点睛】本题考查已知复数的类型求参数范围,考查复数的除法运算.5B【解析】根据题意得到,解得答案.【详解】,解得或(舍去).故.故选:.【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.6A【解析】先求出的解析式,再求出的解析式,根据三角函数图象的对称性可求实数满足的等
11、式,从而可求其最小值.【详解】的图象向右平移个单位长度,所得图象对应的函数解析式为,故.令,解得,.因为为偶函数,故直线为其图象的对称轴,令,故,因为,故,当时,.故选:A.【点睛】本题考查三角函数的图象变换以及三角函数的图象性质,注意平移变换是对自变量做加减,比如把的图象向右平移1个单位后,得到的图象对应的解析式为,另外,如果为正弦型函数图象的对称轴,则有,本题属于中档题7D【解析】由题意,分析即得解【详解】由题意,故,故选:D【点睛】本题考查了元素和集合,集合和集合之间的关系,考查了学生概念理解,数学运算能力,属于基础题.8B【解析】由f(1)=得a2=,a=或a=-(舍),即f(x)=(
12、.由于y=|2x-4|在(-,2上单调递减,在2,+)上单调递增,所以f(x)在(-,2上单调递增,在2,+)上单调递减,故选B.9D【解析】先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择.【详解】年份2009201020112012201320142015201620172018累计装机容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现
13、下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.故选:D【点睛】本题考查条形图,考查基本分析求解能力,属基础题.10A【解析】化简得到,再利用二项式定理展开得到答案.【详解】展开式中的项为.故选:【点睛】本题考查了二项式定理,意在考查学生的计算能力.11C【解析】根据充分条件和必要条件的定义结合对数的运算进行判断即可【详解】a,b(1,+),ablogab1,logab1ab,ab是logab1的充分必要条件,故选C【点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键12
14、D【解析】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。137【解析】作出不等式组表示的平面区域,得到如图的ABC及其内部,其中A(2,1),B(1,2),C(4,5)设z=F(x,y)=2x+3y,将直线l:z=2x+3y进行平移,当l经过点A时,目标函数z达到最小值z最小值=F(2
15、,1)=714【解析】由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。【详解】由题意,当且仅当时等号成立,所以,当且仅当时取等号,所以当时,取得最小值【点睛】利用基本不等式求最值必须具备三个条件:各项都是正数;和(或积)为定值;等号取得的条件。15【解析】取的中点,连接,取的中点,连接,直线与所成的角为,计算,根据余弦定理计算得到答案。【详解】取的中点,连接,依题意可得,所以平面,所以,因为,分别、的中点,所以,因为,所以,所以平面,故,故,故两两垂直。取的中点,连接,因为,所以直线与所成的角为,设,则,所以,化简得,解得,即.故答案为:.【点睛】本题考查了根据异面直线夹角
16、求长度,意在考查学生的计算能力和空间想象能力.16【解析】连接、交于点,取的中点,证明四边形为平行四边形,可判断命题的正误;利用线面平行的性质定理和空间平行线的传递性可判断命题的正误;连接,证明出,结合线面垂直和面面垂直的判定定理可判断命题的正误;假设平面与平面垂直,利用面面垂直的性质定理可判断命题的正误.综合可得出结论.【详解】对于命题,连接、交于点,取的中点、,连接、,如下图所示:则且,四边形是矩形,且,为的中点,为的中点,且,且,四边形为平行四边形,即,平面,平面,平面,命题正确;对于命题,平面,平面,平面,若四点、共面,则这四点可确定平面,则,平面平面,由线面平行的性质定理可得,则,但
17、四边形为梯形且、为两腰,与相交,矛盾.所以,命题错误;对于命题,连接、,设,则,在中,则为等腰直角三角形,且,且,由余弦定理得,又,平面,平面,、为平面内的两条相交直线,所以,平面,平面,平面平面,命题正确;对于命题,假设平面与平面垂直,过点在平面内作,平面平面,平面平面,平面,平面,平面,又,平面,平面,.,平面,平面,.,显然与不垂直,命题错误.故答案为:.【点睛】本题考查立体几何综合问题,涉及线面平行、面面垂直的证明、以及点共面的判断,考查推理能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17()极小值,极大值;()或【解析】()根据偶函数定义列方程,解
18、得.再求导数,根据导函数零点列表分析导函数符号变化规律,即得极值,()先分离变量,转化研究函数,利用导数研究单调性与图象,最后根据图象确定满足条件的的取值范围【详解】()由函数是偶函数,得,即对于任意实数都成立,所以. 此时,则.由,解得. 当x变化时,与的变化情况如下表所示: 00极小值极大值所以在,上单调递减,在上单调递增. 所以有极小值,有极大值. ()由,得. 所以“在区间上有两个零点”等价于“直线与曲线,有且只有两个公共点”. 对函数求导,得. 由,解得,. 当x变化时,与的变化情况如下表所示: 00极小值极大值所以在,上单调递减,在上单调递增. 又因为,所以当或时,直线与曲线,有且
19、只有两个公共点. 即当或时,函数在区间上有两个零点.【点睛】利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.18(1)(2)【解析】(1) 设出直线的方程,再与抛物线联立方程组,进而求得点的坐标,结合弦长即可求得抛物线的方程;(2) 设直线的方程,运用韦达定理可得,可得之间的关系,再运用进行裂项,可求得,解不等式求得的值.【详解】解:(1)设过抛物线焦点的直线方程为,与抛物线方程联立得:,设,所以,所以抛物线方程为(2)设直线方程为,由得.【
20、点睛】本题考查了直线与抛物线的关系,考查了韦达定理和运用裂项法求数列的和,考查了运算能力,属于中档题.19(1)(i)填表见解析(ii)没有的把握认为“日平均走步数和性别是否有关”(2)详见解析【解析】(1)(i)由已给数据可完成列联表,(ii)计算出后可得;(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,的取值为,由二项分布概率公式计算出各概率得分布列,由期望公式计算期望【详解】解(1)(i)运动达人非运动达人总计男352560女142640总计4951100(ii)由列联表得所以没有的把握认为“日平均走步数和性别是否有关”(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,
21、.易知所以的分布列为0123【点睛】本题考查列联表,考查独立性检验,考查随机变量的概率分布列和期望属于中档题本题难点在于认识到20(1) (2)见解析【解析】试题分析:(1)分别求得和,由点斜式可得切线方程;(2)由已知条件可得有两个相异实根,进而再求导可得,结合函数的单调性可得,从而得证.试题解析:(1)由已知条件,当时,当时,所以所求切线方程为 (2)由已知条件可得有两个相异实根,令,则,1)若,则,单调递增,不可能有两根;2)若,令得,可知在上单调递增,在上单调递减,令解得,由有,由有,从而时函数有两个极值点,当变化时,的变化情况如下表单调递减单调递增单调递减因为,所以,在区间上单调递增,另解:由已知可得,则,令,则,可知函数在单调递增,在单调递减,若有两个根,则可得,当时, ,所以在区间上单调递增,所以21(1)(2)2【解析】(1)先求得切点坐标,利用导数求得切线的斜率,由此求得切线方程.(2)对分成,两种情况进行分类讨论.当时 ,将不等式转化为,构造函数,利用导数求得的最小值(设为)的取值范围,由的得在上恒成立,结合一元二次不等式恒成立,判别式小于零列不等式,解不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度挖掘机销售与售后服务一体化合同4篇
- 《概率论基础:课件中的样本空间与随机事件》
- 中国多功能专业扩声音响项目投资可行性研究报告
- 2025年花卉文化节组织与执行合同3篇
- 2025年山东寿光检测集团有限公司招聘笔试参考题库含答案解析
- 2025年福建厦门盐业有限责任公司招聘笔试参考题库含答案解析
- 2025年浙江杭州文化广播电视集团招聘笔试参考题库含答案解析
- 2025年中国东方航空江苏有限公司招聘笔试参考题库含答案解析
- 二零二五年度智能门锁升级与安装合同4篇
- 二零二五版科技园区建设与运营合同创新生态3篇
- 微信小程序运营方案课件
- 抖音品牌视觉识别手册
- 陈皮水溶性总生物碱的升血压作用量-效关系及药动学研究
- 安全施工专项方案报审表
- 学习解读2022年新制定的《市场主体登记管理条例实施细则》PPT汇报演示
- 好氧废水系统调试、验收、运行、维护手册
- 中石化ERP系统操作手册
- 五年级上册口算+脱式计算+竖式计算+方程
- 气体管道安全管理规程
- 《眼科学》题库
- 交通灯控制系统设计论文
评论
0/150
提交评论