非平稳时间序列的随机分析ppt课件_第1页
非平稳时间序列的随机分析ppt课件_第2页
非平稳时间序列的随机分析ppt课件_第3页
非平稳时间序列的随机分析ppt课件_第4页
非平稳时间序列的随机分析ppt课件_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第四章 非平稳序列的随机分析时间序列的分解差分运算ARIMA模型Auto-Regressive模型异方差的性质方差齐性变化条件异方差模型4.1 时间序列的分解4.1.1 Wold分解定理4.1.2 Cramer分解定理引例4.1.1、Wold分解定理1938对于任何一个离散平稳过程 它都可以分解为两个不相关的平稳序列之和,其中一个为确定性的,另一个为随机性的,无妨记作 其中: 为确定性序列, 为随机序列, 它们需求满足如下条件 1 2 3确定性序列与随机序列的定义对恣意序列 而言,令 关于q期之前的序列值作线性回归 其中 为回归残差序列, 。显然, ,且随着q的增大而增大,也就是说 是非减的有

2、界序列,它的大小可以衡量历史信息对现时值的预测精度。 越小,阐明预测得越准确, 越大,阐明预测得越差。对比43页AR模型确定性序列:假设即阐明序列随着时间的开展有很强的规律性。随机序列:假设即阐明序列随着时间的开展随机性很强,预测效果很差,此时称 是随机序列。例如:ARMA模型分解确定性序列随机序列Wold分解定理阐明任何平稳序列都可以分解为确定性平稳序列和随机平稳序列之和。它是现代时间序列分析实际的灵魂,是构造ARMA模型拟合平稳序列的实际根底。4.1.2、Cramer分解定理1961任何一个时间序列可适用于非平稳序列 都可以分解为两部分的叠加:其中一部分是由多项式决议确实定性趋势成分,另一

3、部分是平稳的零均值误差成分,即确定性影响随机性影响例如:平稳ARMA为常数系数为一个零均值白噪声序列为延迟算子对Cramer分解定理的了解:Cramer 分解定理是Wold分解定理的实际推行,它阐明任何一个序列的动摇都可以视为同时遭到了确定性影响和随机性影响的综协作用。平稳序列要求这两方面的影响都是稳定的,而非平稳序列产生的机理就在于它所遭到的这两方面的影响至少有一方面是不稳定的。 4.2 差分运算差分运算的本质差分方式的选择过差分4.2.1、差分运算的本质得到察看值序列之后,无论采用确定性时序分析方法还是随机时序分析方法,第一步都是要提取序列中确实定性信息。确定性时序分析方法:季节指数、长期

4、趋势模型、挪动平均消弱短期随机动摇对序列的影响、指数平滑等第五章。差分方法是一种非常简便、有效确实定性信息提取方法Box和Jenkins。Cramer分解定理在实际上保证了适当阶数的差分一定可以充分提取确定性信息。离散序列的d阶差分就相当于延续变量的d阶求导,在上述分解下, d阶差分就可充分提取时序中确实定性信息。 展开1阶差分,有1阶差分本质上就是一个自回归过程,它是用延迟一期的历史数据 作为自变量来解释当期序列值的变动情况,差分序列 度量的是1阶自回归过程中产生的随机误差的大小。差分运算的本质是运用自回归的方式提取确定性信息 随机误差4.2.2 差分方式的选择1序列蕴含着显著的线性趋势,一

5、阶差分就可以实现趋势平稳 2序列蕴含着曲线趋势,通常低阶二阶或三阶差分就可以提取出曲线趋势的影响 3对于蕴含着固定周期的序列进展步长为周期长度的差分运算,通常可以较好地提取周期信息 【例4.1】1964年1999年中国纱年产量序列蕴含着一个近似线性的递增趋势。对该序列进展一阶差分运算 调查差分运算对该序列线性趋势信息的提取作用 1序列蕴含着显著的线性趋势差分前后时序图原序列时序图差分后序列时序图序列蕴含着显著的线性趋势,一阶差分就可以实现趋势平稳 2序列蕴含着曲线趋势例4.2 尝试提取1950年1999年北京市民用车辆拥有量序列确实定性信息差分后序列时序图一阶差分二阶差分序列蕴含着显著的曲线趋

6、势,二阶或三阶差分就可以实现趋势平稳 3蕴含着固定周期的序列例4.3 差分运算提取1962年1月1975年12月平均每头奶牛的月产奶量序列中确实定性信息 差分后序列时序图1阶差分:提取线性递增趋势,剩季节动摇和随机动摇。序列还蕴含着固定周期,如何实现趋势平稳? 思索:假设把每一时辰的察看值与上年同期相应的察看值相减,能否能将原序列的周期性变化消除?或实现平稳化,在经济上,就是调查与前期相比的净增值,用数学言语来描画就是定义季节差分算子。定义:季节差分可以表示为1阶12步差分:提取周期信息。4.3.3、过差分 足够多次的差分运算可以充分地提取原序列中的非平稳确定性信息但过度的差分会呵斥有用信息的

7、无谓浪费,从而降低估计的精度。 假设序列如下调查一阶差分后序列和二阶差分序列 的平稳性与方差 例4.4过差分本质上是由于过多次的差分导致有效信息的无谓浪费而降低了估计的精度。一阶差分平稳二阶差分过差分平稳4.3 ARIMA模型ARIMA模型构造ARIMA模型性质ARIMA模型建模ARIMA模型预测疏系数模型季节模型4.3.1、ARIMA模型构造运用场所:差分平稳序列拟合ARIMAautoregressive integrated moving average求和自回归挪动平均ARIMAp,d,q模型构造为平稳可逆ARMAp,q模型的自回归系数多项式4.1对比63页为平稳可逆ARMAp,q模型的

8、挪动平均系数多项式。4.1简记为4.2 ARIMA模型的本质就是差分运算与ARMA模型的组合。即任何非平稳序列假设能经过适当阶数的差分实现差分后平稳,此时可对差分后序列进展ARMA模型拟合了。ARIMA 模型族d=0ARIMA(p,d,q)=ARMA(p,q)P=0ARIMA(P,d,q)=IMA(d,q)q=0ARIMA(P,d,q)=ARI(p,d)d=1,P=q=0ARIMA(0,1,0)=random walk model随机游走模型( random walk)模型构造模型产生典故Karl Pearson(1905.07)在杂志上提问:假设有个醉汉醉得非常严重,完全丧失方向感,把他放在

9、荒郊野外,一段时间之后再去找他,在什么地方找到他的概率最大呢?雷利爵士1905.08以为,最好去初始位置找他2、ARIMA模型的平稳性 自回归系数多项式的根为特征根的倒数,所以ARIMA(p,d,q)模型共有p+d个特征根,其中p个在单位圆内,d个在单位圆上。 所以当 时ARIMA(p,d,q)模型非平稳。例4.5ARIMA(0,1,0)时序图3、ARIMA模型的方差齐性 时,原序列方差非齐性d阶差分后,差分后序列方差齐性问题:平稳AR模型和可逆MA模型,它们能否具有方差齐性?回想:Cramer分解定理1961任何一个时间序列可适用于非平稳序列 都可以分解为两部分的叠加:其中一部分是由多项式决

10、议确实定性趋势成分,另一部分是平稳的零均值误差成分,即确定性影响随机性影响例如:平稳ARMA为常数系数为一个零均值白噪声序列为延迟算子离散序列的d阶差分就相当于延续变量的d阶求导,在上述分解下, d阶差分就可充分提取时序中确实定性信息。留意:防止出现过差分。ARIMA模型构造ARIMAp,d,q模型构造分别为平稳可逆ARMAp,q模型的自回归系数多项式和挪动平均系数。留意:ARIMAp,q的平稳性?方差齐性? ARMAp,q呢?ARIMA模型建模步骤获得观察值序列平稳性检验差分运算YN白噪声检验Y分析结束N拟合ARMA模型例4.6对1952年1988年中国农业实践国民收入指数序列建模d=rea

11、d.csv(shouru.csv,head=F)shouru=ts(d,start=1952,end=1988,freq=1) ts.plot(shouru,type=b) chafen=diff(shouru,differences=1) ts.plot(chafen) acf(chafen,10) 时序图和一阶差分序列时序图acf(chafen,10)pacf(chafen,10)Box.test(chafen, type=Ljung-Box,lag=6)data: chafenX-squared = 15.3304, df = 6, p-value = 0.01784arima(chaf

12、en, order = c(0,0,1),method=ML) arima(x = chafen, order = c(0, 0, 1), method = ML)Coefficients: ma1 intercept 0.6710 4.9947s.e. 0.1648 2.0sigma2 estimated as 53.42: log likelihood = -122.99, aic = 251.97a= arima(chafen, order = c(0,0,1),method=ML)r=a$residualsBox.test(r,type=Ljung-Box,lag=6,fitdf=1)data: rX-squared = 3.6649, df = 5, p-value = 0.5986p=pt(4.0716,df=35,lower.tail = F)*2p1 0.0002536605 (theta1的检验p=pt(2.4801,df=35,lower.tail =

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论