2022届福建省泉州永春华侨高考冲刺押题(最后一卷)数学试卷含解析_第1页
2022届福建省泉州永春华侨高考冲刺押题(最后一卷)数学试卷含解析_第2页
2022届福建省泉州永春华侨高考冲刺押题(最后一卷)数学试卷含解析_第3页
2022届福建省泉州永春华侨高考冲刺押题(最后一卷)数学试卷含解析_第4页
2022届福建省泉州永春华侨高考冲刺押题(最后一卷)数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是( )ABCD2 “角谷猜想”的内容是:对于任意一个大于1的整数,如果为偶数就除以2,如果是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入,则输出的(

2、 )A6B7C8D93已知函数与的图象有一个横坐标为的交点,若函数的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是( )ABCD4已知双曲线:,为其左、右焦点,直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为( )ABCD5已知函数,则的最小值为( )ABCD6已知函数f(x),若关于x的方程f(x)kx恰有4个不相等的实数根,则实数k的取值范围是()A B C D 7运行如图所示的程序框图,若输出的的值为99,则判断框中可以填( )ABCD8已知是等差数列的前项和,若,设,则数列的前项和取最大值时的值为( )A2020B20l9C

3、2018D20179我国宋代数学家秦九韶(1202-1261)在数书九章(1247)一书中提出“三斜求积术”,即:以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积. 其实质是根据三角形的三边长,求三角形面积,即. 若的面积,则等于( )ABC或D或10若,则的虚部是A3BCD11若双曲线的一条渐近线与直线垂直,则该双曲线的离心率为( )A2BCD12设集合,集合 ,则 =( )ABCDR二、填空题:本题共4小题,每小题5分,共20分。13设随机变量服从正态分布,若,则的值是_14在的二项展开式中,所有项的系数之和为1024,则展

4、开式常数项的值等于_15动点到直线的距离和他到点距离相等,直线过且交点的轨迹于两点,则以为直径的圆必过_.16直线xsiny20的倾斜角的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,矩形和梯形所在的平面互相垂直,.(1)若为的中点,求证:平面;(2)若,求四棱锥的体积.18(12分)如图,在四棱锥中,底面是平行四边形,平面,是棱上的一点,满足平面.()证明:;()设,若为棱上一点,使得直线与平面所成角的大小为30,求的值.19(12分)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为(为参数),直线经过点且倾斜角为

5、.(1)求曲线的极坐标方程和直线的参数方程;(2)已知直线与曲线交于,满足为的中点,求.20(12分)在直角坐标系中,直线的参数方程为(为参数,).在以为极点,轴正半轴为极轴的极坐标中,曲线:.(1)当时,求与的交点的极坐标;(2)直线与曲线交于,两点,线段中点为,求的值.21(12分)已知x,y,z均为正数(1)若xy1,证明:|x+z|y+z|4xyz;(2)若,求2xy2yz2xz的最小值22(10分)已知是各项都为正数的数列,其前项和为,且为与的等差中项(1)求证:数列为等差数列;(2)设,求的前100项和参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项

6、中,只有一项是符合题目要求的。1C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题2B【解析】模拟程序运行,观察变量值可得结论【详解】循环前,循环时:,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,满足条件,退出循环,输出故选:B【点睛】本题考查程序框图,考查循环结构,解

7、题时可模拟程序运行,观察变量值,从而得出结论3A【解析】根据题意,求出,所以,根据三角函数图像平移伸缩,即可求出的取值范围.【详解】已知与的图象有一个横坐标为的交点,则,若函数图象的纵坐标不变,横坐标变为原来的倍, 则,所以当时,在有且仅有5个零点, ,.故选:A.【点睛】本题考查三角函数图象的性质、三角函数的平移伸缩以及零点个数问题,考查转化思想和计算能力.4D【解析】由|AF2|3|BF2|,可得.设直线l的方程xmy+,m0,设,即y13y2,联立直线l与曲线C,得y1+y2-,y1y2,求出m的值即可求出直线的斜率.【详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的

8、方程xmy+,m0,双曲线的渐近线方程为x2y,m2,设A(x1,y1),B(x2,y2),且y10,由|AF2|3|BF2|,y13y2由,得(2m)24(m24)0,即m2+40恒成立,y1+y2,y1y2,联立得,联立得,即:,解得:,直线的斜率为,故选D【点睛】本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题5C【解析】利用三角恒等变换化简三角函数为标准正弦型三角函数,即可容易求得最小值.【详解】由于,故其最小值为:.故选:C.【点睛】本题考查利用降幂扩角公式、辅助角公式化简三角函数,以及求三角函数的最值,属综合基础题.6D【解析】由已知可将问题转化为:yf

9、(x)的图象和直线ykx有4个交点,作出图象,由图可得:点(1,0)必须在直线ykx的下方,即可求得:k;再求得直线ykx和yln x相切时,k;结合图象即可得解.【详解】若关于x的方程f(x)kx恰有4个不相等的实数根,则yf(x)的图象和直线ykx有4个交点作出函数yf(x)的图象,如图,故点(1,0)在直线ykx的下方k10,解得k.当直线ykx和yln x相切时,设切点横坐标为m,则k,m.此时,k,f(x)的图象和直线ykx有3个交点,不满足条件,故所求k的取值范围是,故选D.【点睛】本题主要考查了函数与方程思想及转化能力,还考查了导数的几何意义及计算能力、观察能力,属于难题7C【解

10、析】模拟执行程序框图,即可容易求得结果.【详解】运行该程序:第一次,;第二次,;第三次,;第九十八次,;第九十九次,此时要输出的值为99.此时.故选:C.【点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.8B【解析】根据题意计算,计算,得到答案.【详解】是等差数列的前项和,若,故,故,当时,当时,故前项和最大.故选:.【点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用.9C【解析】将,代入,解得,再分类讨论,利用余弦弦定理求,再用平方关系求解.【详解】已知,代入,得,即 ,解得,当时,由余弦弦定理得: ,.当时,由余弦弦定理

11、得: , .故选:C【点睛】本题主要考查余弦定理和平方关系,还考查了对数学史的理解能力,属于基础题.10B【解析】因为,所以的虚部是.故选B11B【解析】由题中垂直关系,可得渐近线的方程,结合,构造齐次关系即得解【详解】双曲线的一条渐近线与直线垂直双曲线的渐近线方程为,得则离心率故选:B【点睛】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.12D【解析】试题分析:由题,选D考点:集合的运算二、填空题:本题共4小题,每小题5分,共20分。131【解析】由题得,解不等式得解.【详解】因为,所以,所以c=1.故答案为1【点睛】本题主要考查正态分布的图像和

12、性质,意在考查学生对该知识的理解掌握水平和分析推理能力.14【解析】利用展开式所有项系数的和得n=5,再利用二项式展开式的通项公式,求得展开式中的常数项.【详解】因为的二项展开式中,所有项的系数之和为4n=1024, n=5,故的展开式的通项公式为Tr+1=C35-r,令,解得r=4,可得常数项为T5=C3=15,故填15.【点睛】本题主要考查了二项式定理的应用、二项式系数的性质,二项式展开式的通项公式,属于中档题.15【解析】利用动点到直线的距离和他到点距离相等,,可知动点的轨迹是以为焦点的抛物线,从而可求曲线的方程,将 ,代入,利用韦达定理,可得 ,从而可知以为直径的圆经过原点O.【详解】

13、设点,由题意可得,可得,设直线的方程为,代入抛物线可得,以AB为直径的圆经过原点.故答案为:(0,0)【点睛】本题考查了抛物线的定义,考查了直线和抛物线的交汇问题,同时考查了方程的思想和韦达定理,考查了运算能力,属于中档题.16【解析】因为sin 1,1,所以sin 1,1,所以已知直线的斜率范围为1,1,由倾斜角与斜率关系得倾斜角范围是答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1)见解析(2) 【解析】(1)设EC与DF交于点N,连结MN,由中位线定理可得MNAC,故AC平面MDF;(2)取CD中点为G,连结BG,EG,则可证四边形ABGD是矩形,由面面垂直

14、的性质得出BG平面CDEF,故BGDF,又DFBE得出DF平面BEG,从而得出DFEG,得出RtDEGRtEFD,列出比例式求出DE,代入体积公式即可计算出体积【详解】(1)证明:设与交于点,连接,在矩形中,点为中点,为的中点,又平面,平面,平面.(2)取中点为,连接,平面平面,平面平面,平面,平面,同理平面,的长即为四棱锥的高,在梯形中,四边形是平行四边形,平面,又平面,又,平面,.注意到,.【点睛】求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法分割法、补形法、等体积法. 割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积

15、公式的几何体进行解决等积法:等积法包括等面积法和等体积法等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值18()证明见解析()【解析】()由平面,可得,又因为是的中点,即得证;()如图建立空间直角坐标系,设,计算平面的法向量,由直线与平面所成角的大小为30,列出等式,即得解.【详解】()如图,连接交于点,连接,则是平面与平面的交线,因为平面,故,又因为是的中点,所以是的中点,故.()由条件可知,所以,故以为坐

16、标原点,为轴,为轴,为轴建立空间直角坐标系,则,设,则,设平面的法向量为,则,即,故取因为直线与平面所成角的大小为30所以,即,解得,故此时.【点睛】本题考查了立体几何和空间向量综合,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.19(1),;(2).【解析】(1)由曲线的参数方程消去参数可得曲线的普通方程,由此可求曲线的极坐标方程;直接利用直线的倾斜角以及经过的点求出直线的参数方程即可;(2)将直线的参数方程,代入曲线的普通方程,整理得,利用韦达定理,根据为的中点,解出即可.【详解】(1)由(为参数)消去参数,可得,即,已知曲线的普通方程为,即,曲线的极坐标方程为,直线经过点,且

17、倾斜角为,直线的参数方程:(为参数,).(2)设对应的参数分别为,.将直线的参数方程代入并整理,得,.又为的中点,即,即,.【点睛】本题考查了圆的参数方程与极坐标方程之间的互化以及直线参数方程的应用,考查了计算能力,属于中档题.20(1),;(2)【解析】(1)依题意可知,直线的极坐标方程为(),再对分三种情况考虑;(2)利用直线参数方程参数的几何意义,求弦长即可得到答案.【详解】(1)依题意可知,直线的极坐标方程为(),当时,联立解得交点,当时,经检验满足两方程,(易漏解之处忽略的情况)当时,无交点;综上,曲线与直线的点极坐标为,(2)把直线的参数方程代入曲线,得,可知,所以.【点睛】本题考

18、查直线与曲线交点的极坐标、利用参数方程参数的几何意义求弦长,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力.21(1)证明见解析;(2)最小值为1【解析】(1)利用基本不等式可得 , 再根据0 xy1时, 即可证明|x+z|y+z|4xyz.(2)由, 得,然后利用基本不等式即可得到xy+yz+xz3,从而求出2xy2yz2xz的最小值.【详解】(1)证明:x,y,z均为正数,|x+z|y+z|(x+z)(y+z),当且仅当xyz时取等号又0 xy1,|x+z|y+z|4xyz;(2),即,当且仅当xyz1时取等号,xy+yz+xz3,2xy2yz2xz2xy+yz+xz1,2xy2yz2xz的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论