




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,若AB,则实数的取值范围是( )ABCD2如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,则异面直线与所成角的余弦值为( )ABCD3设m,n为直线
2、,、为平面,则的一个充分条件可以是( )A,B,C,D,4已知单位向量,的夹角为,若向量,且,则( )A2B2C4D65已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为( )ABCD6下列函数中,既是奇函数,又是上的单调函数的是( )ABCD7已知集合Ay|y,Bx|ylg(x2x2),则R(AB)( )A0,)B(,0),+)C(0,)D(,0,+)8设,是非零向量,若对于任意的,都有成立,则ABCD9已知i为虚数单位,则( )ABCD10已知复数z满足,则在复平面上对应的点在( )A第一象限B第二象限C第三象限D第四象限11为双曲线的左焦点,过点的直线与
3、圆交于、两点,(在、之间)与双曲线在第一象限的交点为,为坐标原点,若,且,则双曲线的离心率为( )ABCD12设为抛物线的焦点,为抛物线上三点,若,则( ).A9B6CD二、填空题:本题共4小题,每小题5分,共20分。13已知向量与的夹角为,|1,且(),则实数_.14有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是_15若正三棱柱的所有棱长均为2,点为侧棱上任意一点,则四棱锥的体积为_16以,为圆心的两圆均过,与轴正半轴分别交于,且满足,则
4、点的轨迹方程为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数的最小正周期是,且当时,取得最大值(1)求的解析式;(2)作出在上的图象(要列表)18(12分)已知矩阵的一个特征值为4,求矩阵A的逆矩阵.19(12分)在中,内角的对边分别为,且(1)求;(2)若,且面积的最大值为,求周长的取值范围.20(12分)已知函数.()求的值;()若,且,求的值.21(12分)选修44:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C的参数方程为(为参数)以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为,点P为曲线C上的动点,求点P到
5、直线l距离的最大值22(10分)在直角坐标系xOy中,直线的参数方程为(t为参数,)以坐标原点 为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为(l)求直线的普通方程和曲线C的直角坐标方程:(2)若直线与曲线C相交于A,B两点,且求直线 的方程参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】先化简,再根据,且AB求解.【详解】因为,又因为,且AB,所以.故选:D【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.2B【解析】建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值.
6、【详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标系如下图所示.所以,所以.所以异面直线与所成角的余弦值为.故选:B【点睛】本小题主要考查异面直线所成的角的求法,属于中档题.3B【解析】根据线面垂直的判断方法对选项逐一分析,由此确定正确选项.【详解】对于A选项,当,时,由于不在平面内,故无法得出.对于B选项,由于,所以.故B选项正确.对于C选项,当,时,可能含于平面,故无法得出.对于D选项,当,时,无法得出.综上所述,的一个充分条件是“,”故选:B【点睛】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.4C【解析】根据列方程,由此求得的值,进而求
7、得.【详解】由于,所以,即,解得.所以所以.故选:C【点睛】本小题主要考查向量垂直的表示,考查向量数量积的运算,考查向量模的求法,属于基础题.5B【解析】由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.【详解】抛物线的焦点为,则,即,设点的坐标为,点的坐标为,如图:,解得,或(舍去),直线的方程为,设直线与抛物线的另一个交点为,由,解得或,故直线被截得的弦长为故选:B【点睛】本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.6C【解析】对选项逐个验证即得答案.【详解】对于,是偶函数,故选项错误;对于,定义域为,在上
8、不是单调函数,故选项错误;对于,当时,;当时,;又时,.综上,对,都有,是奇函数.又时,是开口向上的抛物线,对称轴,在上单调递增,是奇函数,在上是单调递增函数,故选项正确;对于,在上单调递增,在上单调递增,但,在上不是单调函数,故选项错误.故选:.【点睛】本题考查函数的基本性质,属于基础题.7D【解析】求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【详解】集合Ay|yy|y00,+);Bx|ylg(x2x2)x|x2x20 x|0 x(0,),AB(0,),R(AB)(,0,+).故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集
9、合的运算,属于基础题目.8D【解析】画出,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.【详解】由题意,得向量是所有向量中模长最小的向量,如图,当,即时,最小,满足,对于任意的,所以本题答案为D.【点睛】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.9A【解析】根据复数乘除运算法则,即可求解.【详解】.故选:A.【点睛】本题考查复数代数运算,属于基础题题.10A【解析】设,由得:,由复数相等可得的值,进而求出,即可得解.【详解】设,由得:,即,由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.
10、故选:A.【点睛】本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题.11D【解析】过点作,可得出点为的中点,由可求得的值,可计算出的值,进而可得出,结合可知点为的中点,可得出,利用勾股定理求得(为双曲线的右焦点),再利用双曲线的定义可求得该双曲线的离心率的值.【详解】如下图所示,过点作,设该双曲线的右焦点为,连接.,., ,为的中点,由双曲线的定义得,即,因此,该双曲线的离心率为.故选:D.【点睛】本题考查双曲线离心率的求解,解题时要充分分析图形的形状,考查推理能力与计算能力,属于中等题.12C【解析】设,由可得,利用定义将用表示即可.【详解】设
11、,由及,得,故,所以.故选:C.【点睛】本题考查利用抛物线定义求焦半径的问题,考查学生等价转化的能力,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。131【解析】根据条件即可得出,由即可得出,进行数量积的运算即可求出【详解】向量与的夹角为,|1,且;1故答案为:1【点睛】考查向量数量积的运算及计算公式,以及向量垂直的充要条件14丙【解析】若甲获奖,则甲、乙、丙、丁说的都是错的,同理可推知乙、丙、丁获奖的情况,可知获奖的歌手是丙考点:反证法在推理中的应用.15【解析】依题意得,再求点到平面的距离为点到直线的距离,用公式所以即可得出答案.【详解】解: 正三棱柱的所有棱长均为2,则,
12、点到平面的距离为点到直线的距离所以,所以.故答案为: 【点睛】本题考查椎体的体积公式,考查运算能力,是基础题.16【解析】根据圆的性质可知在线段的垂直平分线上,由此得到,同理可得,由对数运算法则可知,从而化简得到,由此确定轨迹方程.【详解】,和的中点坐标为,且在线段的垂直平分线上,即,同理可得:,点的轨迹方程为故答案为:【点睛】本题考查动点轨迹方程的求解问题,关键是能够利用圆的性质和对数运算法则构造出满足的方程,由此得到结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)见解析.【解析】(1)根据函数的最小正周期可求出的值,由该函数的最大值可得出的值,再由,结
13、合的取值范围可求得的值,由此可得出函数的解析式;(2)由计算出的取值范围,据此列表、描点、连线可得出函数在区间上的图象.【详解】(1)因为函数的最小正周期是,所以又因为当时,函数取得最大值,所以,同时,得,因为,所以,所以;(2)因为,所以,列表如下:描点、连线得图象:【点睛】本题考查正弦函数解析式的求解,同时也考查了利用五点作图法作图,考查分析问题与解决问题的能力,属于中等题.18.【解析】根据特征多项式可得,可得,进而可得矩阵A的逆矩阵.【详解】因为矩阵的特征多项式,所以,所以.因为,且,所以.【点睛】本题考查矩阵的特征多项式以及逆矩阵的求解,是基础题.19(1)(2)【解析】(1)利用二
14、倍角公式及三角形内角和定理,将化简为,求出的值,结合,求出A的值;(2)写出三角形的面积公式,由其最大值为求出.由余弦定理,结合,求出的范围,注意.进而求出周长的范围.【详解】解:(1)整理得解得或(舍去)又;(2)由题意知,又,又周长的取值范围是【点睛】本题考查了二倍角余弦公式,三角形面积公式,余弦定理的应用,求三角形的周长的范围问题.属于中档题.20();().【解析】()直接代入再由诱导公式计算可得;()先得到,再根据利用两角差的余弦公式计算可得【详解】解:();()因为所以,由得,又因为,故,所以,所以.【点睛】本题考查了三角函数中的恒等变换应用,属于中档题21(1),(2)【解析】试题分析:利用将极坐标方程化为直角坐标方程:化简为cossin1,即为xy1再利用点到直线距离公式得:设点P的坐标为(2cos,sin),得P到直线l的距离试题解析:解:化简为cossin1,则直线l的直角坐标方程为xy1设点P的坐标为(2cos,sin),得P到直线l的距离,dmax 考点:极坐标方程化为直角坐标方程,点到直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新型农村合作经营模式合作协议
- 农民合作参与农业种植技术推广协议
- 2025年黑龙江出租车资格证考试窍门和技巧
- 2025年蚌埠客运驾驶员从业资格考试系统
- 2025年云南客运驾驶员考试试题及答案大全
- 2025年成都危险货物运输驾驶员考试题答案
- 零售业私域流量运营:2025年会员管理体系与积分兑换策略报告
- 开放银行生态构建中的金融科技与零售行业的深度整合报告
- 疫情后线下演出市场演出票务线上线下融合趋势研究报告
- 社区心理健康服务2025年推广与社区治理融合研究报告
- 2025电子产品租赁合同模板
- 基于Hive数据仓库的瓜子网二手车数据分析系统设计与实现
- 阑尾炎术前术后健康宣教
- 软件硬件资产管理办法
- 保密培训资料课件
- 江苏水利签证管理办法
- 采购面料知识培训课件
- 商务茶艺教学课件
- 预报员竞赛-雷暴与强对流临近预报-黄金考点6
- 2024冠心病治疗指南讲课件
- 小学生医疗知识普及课件
评论
0/150
提交评论