第三讲_混合策略纳什均衡_第1页
第三讲_混合策略纳什均衡_第2页
第三讲_混合策略纳什均衡_第3页
第三讲_混合策略纳什均衡_第4页
第三讲_混合策略纳什均衡_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 主讲人:李美娟主讲人:李美娟 引言引言有些博弈不存在纳什均衡,或者纳什均衡不唯有些博弈不存在纳什均衡,或者纳什均衡不唯一,如猜硬币博弈,前述纳什均衡分析就无法一,如猜硬币博弈,前述纳什均衡分析就无法对博弈方的选择和博弈结果作明确的预测。对博弈方的选择和博弈结果作明确的预测。这部分对不存在纳什均衡和存在多个纳什均衡这部分对不存在纳什均衡和存在多个纳什均衡的博弈作一些讨论。的博弈作一些讨论。混合策略的引进混合策略的引进一、扑克牌对色游戏一、扑克牌对色游戏-1, 11, -11, -1-1, 1红红黑黑乙乙甲甲红红黑黑不存在前面定义的纳什均衡策略组合。不存在前面定义的纳什均衡策略组合。这类博弈很多

2、,引出混合策略纳什均衡概念。这类博弈很多,引出混合策略纳什均衡概念。混合策略的相关概念混合策略的相关概念混合策略是一种按照什么概率选择这个纯策略、混合策略是一种按照什么概率选择这个纯策略、按照什么概率选择那种纯策略的策略选择指示。按照什么概率选择那种纯策略的策略选择指示。混合策略表明:参与人可以按照一定的概率,随混合策略表明:参与人可以按照一定的概率,随机地从纯策略集合中选择一种纯策略的实际行动机地从纯策略集合中选择一种纯策略的实际行动。期望值:假定存在期望值:假定存在 个可能的取值个可能的取值 ,并且这些取值发生的概率分别为:并且这些取值发生的概率分别为: ,则期,则期望值为:望值为: n1

3、2, ,nX XX12,np pp1122nnp Xp Xp X 小孩玩的游戏小孩玩的游戏“石头,剪子,布石头,剪子,布”,也是一种博弈。但是,这个博弈有一,也是一种博弈。但是,这个博弈有一种有趣的特征,即给定一方的任何选择种有趣的特征,即给定一方的任何选择,另一方都有制胜对方的战略,因而这,另一方都有制胜对方的战略,因而这个战略不是最优的。任何个战略不是最优的。任何“纯战略纯战略”都都不是最优的,纯战略是不是最优的,纯战略是“石头,剪子,石头,剪子,布布”中的任何一个。中的任何一个。石头、剪刀、布石头、剪刀、布0, 01, -1 -1, 1-1, 11, -10, 01, -1-1, 10,

4、 0石石 头头剪剪 子子布布博弈方博弈方2 2石石 头头剪剪 子子布布博博弈弈方方1 但是,我们知道,玩这个游戏总是但是,我们知道,玩这个游戏总是以对方不易猜出的随机方式出招。事实以对方不易猜出的随机方式出招。事实上,可以通过数学证明,当双方都以每上,可以通过数学证明,当双方都以每个战略按个战略按1/3的概率出招时,达成一种的概率出招时,达成一种双方都不愿改变这种概率分布的局面。双方都不愿改变这种概率分布的局面。这被称为这被称为“混合战略纳什均衡混合战略纳什均衡”,而这,而这种以随机方式选择纯战略的博弈被称为种以随机方式选择纯战略的博弈被称为“混合战略博弈混合战略博弈”。 以混合战略博弈我们来

5、看下面几个以混合战略博弈我们来看下面几个例子。例子。 例子例子1 为什么一般人总是小错不断,大为什么一般人总是小错不断,大错不犯;偷税漏税的一般是中小企业,错不犯;偷税漏税的一般是中小企业,大企业会老老实实地交税?大企业会老老实实地交税? 税务部门不会对所有企业的交税情税务部门不会对所有企业的交税情况每一次都去检查,因为这样做的成本况每一次都去检查,因为这样做的成本太高,得不偿失。所以,税务部门总是太高,得不偿失。所以,税务部门总是随机地对企业的交税情况进行检查。随机地对企业的交税情况进行检查。 企业也是随机地在交税与偷漏税之企业也是随机地在交税与偷漏税之间进行选择。税收部门与企业间进行的间进

6、行选择。税收部门与企业间进行的是混合战略博弈。因为如果企业总是交是混合战略博弈。因为如果企业总是交税,税务部门就最好不检查;但给定不税,税务部门就最好不检查;但给定不检查,企业就会偷漏税。所以,两者只检查,企业就会偷漏税。所以,两者只有在随机地检查与不检查,企业随机地有在随机地检查与不检查,企业随机地在偷漏税与交税之间选择,才会达成均在偷漏税与交税之间选择,才会达成均衡。衡。 对于大企业,因一旦偷税数额就巨大,所对于大企业,因一旦偷税数额就巨大,所以,税务部门在随机检查时放在大企业上的可以,税务部门在随机检查时放在大企业上的可能性就大一些;而给定税务部门检查大企业的能性就大一些;而给定税务部门

7、检查大企业的可能性较大,大企业偷漏税的行为就较少,否可能性较大,大企业偷漏税的行为就较少,否则就容易被逮个正着。所以,偷漏税较多的就则就容易被逮个正着。所以,偷漏税较多的就是一些中小企业,大企业纳税的积极性较高。是一些中小企业,大企业纳税的积极性较高。同样的道理,在犯罪或对错误的监督惩罚博弈同样的道理,在犯罪或对错误的监督惩罚博弈中,也是混合博弈,人们可能总是大错不犯小中,也是混合博弈,人们可能总是大错不犯小错不断。错不断。 例子例子2 田忌赛马新编田忌赛马新编 春秋战国时期,齐威王常与旗下大将田春秋战国时期,齐威王常与旗下大将田忌赛马。规则是:每次赛三局,每一局齐威王忌赛马。规则是:每次赛三

8、局,每一局齐威王与田忌各出一匹马比赛奔跑速度。每一局中的与田忌各出一匹马比赛奔跑速度。每一局中的胜者赢败方一千斤铜。田忌有上、中、下三匹胜者赢败方一千斤铜。田忌有上、中、下三匹马,而齐威王也有上、中、下三匹马。每次比马,而齐威王也有上、中、下三匹马。每次比赛,第一局田忌出上马,齐威王也出上马;第赛,第一局田忌出上马,齐威王也出上马;第二局田忌出中马,齐威王也出中马;第三局,二局田忌出中马,齐威王也出中马;第三局,田忌出下马,齐威王也出下马。齐威王的上马田忌出下马,齐威王也出下马。齐威王的上马比田忌的上马好,齐威王的中马也比田忌的中比田忌的上马好,齐威王的中马也比田忌的中马好,齐威王的下马还是比

9、田忌的下马好。于马好,齐威王的下马还是比田忌的下马好。于是,每次比赛的结果都是田忌连输三局。是,每次比赛的结果都是田忌连输三局。 田忌的谋士孙膑了解了田忌的困境田忌的谋士孙膑了解了田忌的困境后,就打听到这样一个消息:尽管齐威后,就打听到这样一个消息:尽管齐威王的上、中、下三匹马都要比田忌的对王的上、中、下三匹马都要比田忌的对应上、中、下三匹马好,但碰巧的是田应上、中、下三匹马好,但碰巧的是田忌的上马可胜齐威王的中马,田忌的中忌的上马可胜齐威王的中马,田忌的中马可胜齐威王的下马。于是,孙膑为田马可胜齐威王的下马。于是,孙膑为田忌献计:下一次比赛中第一局时田忌出忌献计:下一次比赛中第一局时田忌出下

10、马对齐威王的上马输一局,第二局田下马对齐威王的上马输一局,第二局田忌出上马对齐威王的中马,第三局田忌忌出上马对齐威王的中马,第三局田忌出中马对齐威王的下马,这样可连赢两出中马对齐威王的下马,这样可连赢两局,最后净胜一千斤铜。田忌依计而行局,最后净胜一千斤铜。田忌依计而行,果真赢回一千斤铜。,果真赢回一千斤铜。 这个故事曾经被很多人当作博弈论的例这个故事曾经被很多人当作博弈论的例子来演绎,但实际上这个故事与博弈论无关。子来演绎,但实际上这个故事与博弈论无关。博弈论会假定所有局中人都是理性的,不能假博弈论会假定所有局中人都是理性的,不能假定一些局中人聪明而另一些局中人却是傻子。定一些局中人聪明而另

11、一些局中人却是傻子。当田忌出下马时,齐威王最好的选择是出下马当田忌出下马时,齐威王最好的选择是出下马而不是上马。孙膑的计谋中假定齐威王是傻子而不是上马。孙膑的计谋中假定齐威王是傻子,当田忌出下、上、中马时,他仍然按上、中,当田忌出下、上、中马时,他仍然按上、中、下马出,当然要输了。事实上,当田忌出下、下马出,当然要输了。事实上,当田忌出下马时,齐威王应出下马,但齐威王出下马时,马时,齐威王应出下马,但齐威王出下马时,田忌不应出下马而是出中马,但此时齐威王又田忌不应出下马而是出中马,但此时齐威王又应出中马而不是下马了,应出中马而不是下马了,。这样,博弈不。这样,博弈不会有纯战略的均衡。会有纯战略

12、的均衡。 两人只能玩混合战略博弈,齐威两人只能玩混合战略博弈,齐威王分别以王分别以1/6随机的概率选择出上、中随机的概率选择出上、中、下马的任一排列,田忌也如此。由于、下马的任一排列,田忌也如此。由于齐威王存在绝对优势,他平均看来仍然齐威王存在绝对优势,他平均看来仍然会赢田忌一千斤铜。会赢田忌一千斤铜。 混合策略均衡混合策略均衡纯策略与纯策略纳什均衡纯策略与纯策略纳什均衡纯策略:肯定会被选择纯策略:肯定会被选择以以100%100%的概率的概率被被选择的策略。选择的策略。混合策略混合策略混合策略:以一定的概率分布选择某几个行动的混合策略:以一定的概率分布选择某几个行动的策略。策略。混合策略定义:

13、混合策略定义:在n人博弈的策略式表述 中,假定参与人 有K个纯策略: ,那么,概率分布 称为 的一个混合策略混合策略,这里 是 选择 的概率,对于所有的 。nnuuSSG,;,11 i1,iiiKSSS1,iiiKpppi)(ikikspp iiks1, 10 , 11 KikikppKk 显然,纯策略可以理解为混合策略的特例,比如说,纯策略 等价于混合策略 ,即选择纯策略 的概率为1,选择任何其他纯策略的概率为0。is0 , 0 , 1 ipis混合策略混合策略混合策略均衡混合策略均衡设设 是是n n人策略式博弈人策略式博弈的一个混合策略组合。如果对于所有的的一个混合策略组合。如果对于所有的

14、 , 对于每一个对于每一个 都成立,则称混都成立,则称混合策略组合合策略组合 是这个博弈的一是这个博弈的一个纳什均衡。个纳什均衡。 1(, , ,)inppppnnuuSSG,;,11 1,in ( ,)( ,)iiiiiiV p pV p pip1(, , ,)inpppp期望支付期望支付 例:例:参与人参与人1 1的混合策略:(的混合策略:(p,1-p)p,1-p) 参与人参与人2 2的混合策略:的混合策略:(q,1-q)(q,1-q)参与人参与人1的期望支付:的期望支付:如果参与人如果参与人1 1选择选择S S1111:如果参与人如果参与人1 1选择选择S S1212:EVEV1 1(p

15、,q)=p,q)=参与人参与人2 2的期望支付:的期望支付:EVEV2 2(p,q)=p,q)=u1,u2u3,u4u5,u6u7,u8参与参与人人2S11 pS12 1-pS21S22参与人参与人2q1-q13(1)quq u57(1)quq u1357(1) (1)(1) pququp ququ 2468(1) (1)(1) q pup uq pup u混合策略均衡混合策略均衡 例:监督博弈例:监督博弈给定工人偷懒,老板的最优给定工人偷懒,老板的最优选择是监督;给定老板监督,选择是监督;给定老板监督,工人的最优选择是不偷懒;工人的最优选择是不偷懒;给定工人不偷懒,老板的最给定工人不偷懒,老

16、板的最优选择是不监督;给定老板优选择是不监督;给定老板不监督,工人的最优选择是不监督,工人的最优选择是偷懒;如此循环。偷懒;如此循环。1,-1-1,2-2,32,2老板监督不监督偷懒不偷懒工人混合策略均衡混合策略均衡监督不监督偷懒不偷懒工人老板n 假定老板选择混合战略(0.5,0.5)n 工人选择“偷懒”期望支付为 (-1)0.5+30.5=1n 工人选择“不偷懒”期望支付为20.5+20.5=2n 工人应选择“不偷懒” 老板选择“不监督” 工人选择“偷懒0.50.5n 假定老板选择混合战略(0.2,0.8)n 工人选择“偷懒”期望支付为(-1)0.2+30.8=2.2n 工人选择“不偷懒”(

17、期望)支付为20.2+20.8=2n 工人应选择“偷懒” 老板选择“监督” 工人选择“不偷懒1,-1-1,2-2,32,2混合策略均衡混合策略均衡 什么情况下达到纳什均衡状态?n假定存在一个概率q,老板选择混合策略(q,1-q)n工人选择“偷懒”期望收益为(-1)q+3(1-q)=3-4qn工人选择“不偷懒”收益为2n如果老板真的以概率q选择监督,1-q选择不监督,那么意味着他不会始终重复地选择某个纯策略,而他不重复选择的条件必须是工人也不会重复地选择纯策略。 因此,老板以概率q选择监督必然意味着在这种情况下工人没有合适的纯策略选择。=老板的选择必须使工人使工人在两个纯策略之间随机选择在两个纯

18、策略之间随机选择。n工人什么情况下随机选择?混合策略均衡混合策略均衡当工人选择任何一个策略的期望支付相等时,只能随机选择。于是,3-4q=2 ,即q*=1/4,1- q*=3/4。这样,当老板选择(1/4,3/4)的混合战略时,可以使工人在两个纯战略之间无差异。 同理,假设工人选择(p,1-p),(p,1-p)成为其最优混合战略的条件是老板在选择监督与选择不监督之间无差异,即1p+(-1)(1-p)=(-2)p+2(1-p),即p*=1/2,1- p*=1/2。当老板选择(1/4,3/4),工人选择(1/2,1/2)时,刚好互为彼此的最优反应,达到纳什均衡状态,称为混合战略纳什均衡。混合策略均

19、衡混合策略均衡参与人参与人1 1和参与人和参与人2 2的混合策略组合的混合策略组合 构成均构成均衡的必要条件:衡的必要条件:11(,)(,)V p qV p q22(,)(,)VpqVpq( , )p q混合战略均衡的求解方法混合战略均衡的求解方法方法方法1 1:支付最大化法:支付最大化法 给定其他参与人的混合战略,自己选择行动的给定其他参与人的混合战略,自己选择行动的概率分布要使自己期望支付最大化。概率分布要使自己期望支付最大化。q1-q1-pp工人的期望支付函数为(-1)pq+2(1-p)q+3p(1-q)+2(1-p)(1-q)=-4pq+p-2q+2最优化一阶条件为:-4q+1=0 q

20、*=1/4给定工人的混合战略为(p,1-p),老板的混合战略为(q,1-q)支付最大化法求混合战略纳什均衡支付最大化法求混合战略纳什均衡1,-1-1,2-2,32,2老板监督不监督偷懒不偷懒工人混合战略均衡的求解方法混合战略均衡的求解方法方法方法2 2:支付等值法:支付等值法 自己选择策略概率分布使对方不会偏好于任何行自己选择策略概率分布使对方不会偏好于任何行动,即选择每一个策略都会得到相同的收益。动,即选择每一个策略都会得到相同的收益。例子例子例:博弈方例:博弈方1的混合策略(的混合策略(p,1-p) 博弈方博弈方2的混合策略(的混合策略(q,1-q)博弈方博弈方1:由由 可得可得 :q=0

21、.8博弈方博弈方2:由由 可得可得 :p=0.8 2, 35, 23, 11, 5CDAB博弈方博弈方2博博弈弈方方1=25(1)AVqq=3(1)BVqq=ABVV=3(1)CVpp =25(1)DVpp=CDVVn得双方的策略及相应得益:其中,博弈方其中,博弈方1 1的期望得益为:的期望得益为:n博弈方博弈方2 2的期望得益为:的期望得益为:策略策略期望得益期望得益博弈方博弈方1(0.8,0.2)2.6博弈方博弈方2(0.8,0.2)2.611111,(1),(1),(1)(1),0.8 0.8 2 0.8 0.2 5 0.2 0.8 3 0.2 0.2 1 2.6eupqu ACpq u

22、 A Dp qu B Cpq u B D 12222,(1),(1),(1)(1),0.8 0.8 3 0.8 0.2 1 0.2 0.8 2 0.2 0.2 5 2.6eupqu ACpq u A Dp qu B Cpq u B D 多重均衡博弈和混合策略多重均衡博弈和混合策略一、夫妻之争的混合策略纳什均衡一、夫妻之争的混合策略纳什均衡首先,该博弈有两个纳什均衡,本博弈的两个博弈方首先,该博弈有两个纳什均衡,本博弈的两个博弈方不会害怕对方猜到自己的选择,他们主观上并不想隐不会害怕对方猜到自己的选择,他们主观上并不想隐藏自己的选择。因此,该博弈中两博弈方的决策思路藏自己的选择。因此,该博弈中两

23、博弈方的决策思路和原则应该与没有纳什均衡的严格竞争博弈有所不同和原则应该与没有纳什均衡的严格竞争博弈有所不同。2, 10, 00, 01, 3时时 装装足足 球球时装时装足球足球丈丈 夫夫妻妻子子夫妻之争夫妻之争但显然,双方的偏好不同,妻子喜欢前一个,丈夫喜欢但显然,双方的偏好不同,妻子喜欢前一个,丈夫喜欢后一个。故在纯策略的范围内,该博弈也是无法对两博后一个。故在纯策略的范围内,该博弈也是无法对两博弈方的选择提出确定性建议,因此也需要考虑博弈方采弈方的选择提出确定性建议,因此也需要考虑博弈方采用混合策略的可能性。用混合策略的可能性。设设p p和和1-p1-p分别为妻子选择时装表演和足球的概率

24、;分别为妻子选择时装表演和足球的概率;如果妻子不想让丈夫利用自己的选择倾向占上风,则自如果妻子不想让丈夫利用自己的选择倾向占上风,则自己的概率选择应使丈夫选择两种策略的期望得益相同:己的概率选择应使丈夫选择两种策略的期望得益相同:3-100-11)()(pppp得:得:p=3/4设设q q和和1-q1-q分别为丈夫选择时装表演和足球的概率。同分别为丈夫选择时装表演和足球的概率。同样,如果丈夫不想让妻子利用自己的选择倾向占上风样,如果丈夫不想让妻子利用自己的选择倾向占上风,则自己的概率选择应使妻子选择两种策略的期望得,则自己的概率选择应使妻子选择两种策略的期望得益相同:益相同:1)1 (00)1

25、 (2qqqq得:得:q=1/3夫妻之争博弈的混合策略纳什均衡夫妻之争博弈的混合策略纳什均衡 策略策略 得益得益妻子妻子 (0.75,0.25) 0.67丈夫丈夫 (1/3,2/3) 0.75可见,这个结果明显不如夫妻双方能交流协商可见,这个结果明显不如夫妻双方能交流协商时,任何一方迁就另一方的得益好。这是因为时,任何一方迁就另一方的得益好。这是因为缺乏沟通时可能出现最差的结果造成的。缺乏沟通时可能出现最差的结果造成的。也就是说,如果不强行设定双方不能交流串通也就是说,如果不强行设定双方不能交流串通的博弈规则,双方决策时没有被客观或人为的的博弈规则,双方决策时没有被客观或人为的原因隔离开来,也

26、没有因为赌气而采取不理性原因隔离开来,也没有因为赌气而采取不理性的态度,那么这种夫妻之间的决策问题一般不的态度,那么这种夫妻之间的决策问题一般不应该用上述博弈方式解决。应该用上述博弈方式解决。二、制式问题二、制式问题电器和电子设备往往有不同的原理或相关技术电器和电子设备往往有不同的原理或相关技术标准,称之为不同的制式。标准,称之为不同的制式。如果生产相关电器或电子设备的厂商采用相同如果生产相关电器或电子设备的厂商采用相同的制式,那么产品之间就能相互匹配,零配件的制式,那么产品之间就能相互匹配,零配件也可能相互通用,这对于推广各自的产品和在也可能相互通用,这对于推广各自的产品和在生产经营中进行合

27、作很有帮助。生产经营中进行合作很有帮助。设有两个厂商同时计划引进彩电生产线,而彩设有两个厂商同时计划引进彩电生产线,而彩电有电有A A、B B两种不同的制式,那么这时候两个厂两种不同的制式,那么这时候两个厂商之间就有一个选择制式的博弈问题。商之间就有一个选择制式的博弈问题。二、制式问题二、制式问题1, 30, 00, 02, 2ABAB厂商厂商2 2厂厂商商1 1制式问题制式问题 制式问题混合策略纳什均衡制式问题混合策略纳什均衡 A B 得益得益厂商厂商1 1: 0.4 0.6 0.664厂商厂商2 2: 0.67 0.33 1.296假定两厂商采用不同的制式所能获取的各自好假定两厂商采用不同

28、的制式所能获取的各自好处如下图所示:处如下图所示:三、市场机会博弈三、市场机会博弈-50, -50 100, 00, 1000, 0进进不不 进进进进不进不进厂商厂商2厂厂商商1市场机会市场机会 进进 不进不进 得益得益厂商厂商1 1: 2/3 1/3 0厂商厂商2 2: 2/3 1/3 0两厂商同时发现一个市场机会,但这个市场的容量两厂商同时发现一个市场机会,但这个市场的容量并不大,两个厂商该如何选择呢?并不大,两个厂商该如何选择呢?厂商厂商1 1的混合策略必须使厂商的混合策略必须使厂商2 2选择进与不进的期望选择进与不进的期望得益相同,厂商得益相同,厂商2 2 的情形类似。的情形类似。混合

29、策略反应函数混合策略反应函数反应函数:一博弈方对另一博弈方每种可能的反应函数:一博弈方对另一博弈方每种可能的决策内容的最佳反应决策构成的函数。决策内容的最佳反应决策构成的函数。n在纯策略的范畴内,反应函数是各博弈方选择的纯在纯策略的范畴内,反应函数是各博弈方选择的纯策略对其他博弈方纯策略的反应;策略对其他博弈方纯策略的反应;n在混合策略的范畴内,博弈方的决策内容为选择概在混合策略的范畴内,博弈方的决策内容为选择概率分布,反应函数就是一方对另一方的概率分布的率分布,反应函数就是一方对另一方的概率分布的反应,也是一定的概率分布。反应,也是一定的概率分布。n由于纯策略可理解为混合策略,因此实际上反由

30、于纯策略可理解为混合策略,因此实际上反应函数的概念,可以在混合策略概率分布之间应函数的概念,可以在混合策略概率分布之间反应的意义上统一起来。反应的意义上统一起来。法三:混合策略反应函数法三:混合策略反应函数猜硬币博弈猜硬币博弈-1, 11, -11, -1-1, 1正 面反 面猜硬币方猜硬币方正面反面猜硬币博弈猜硬币博弈盖盖硬硬币币方方rq111/21/2)(2rRq )(1qRr (r,1-r):盖硬币方选择正反面的混合策略概率分布:盖硬币方选择正反面的混合策略概率分布(q,1-q):猜硬币方选择正反面的混合策略概率分布:猜硬币方选择正反面的混合策略概率分布当q0.5时,取r为0当r0.5时

31、,取q为1夫妻之争博弈夫妻之争博弈2, 10, 00, 01, 3时装时装足球足球丈夫丈夫时装时装足球足球妻妻子子夫妻之争夫妻之争rq111/33/4)(2rRq )(1rRr (r,1-r):妻子的混合策略概率分布:妻子的混合策略概率分布(q,1-q):丈夫的混合策略概率分布:丈夫的混合策略概率分布当q1/3时,取r为1当r3/4时,取q为1混合战略均衡混合战略均衡 混合战略要求人们以随机的方式选择自己的行混合战略要求人们以随机的方式选择自己的行动,由于随机性行为无法准确预期,因此很多人动,由于随机性行为无法准确预期,因此很多人认为混合战略并非一个令人满意的均衡概念。现认为混合战略并非一个令

32、人满意的均衡概念。现实生活中人们真会这样采取行动吗?实生活中人们真会这样采取行动吗?如何解释混合战略?如何解释混合战略?参与人试图通过选择混合战略给对手造成一种不参与人试图通过选择混合战略给对手造成一种不确定性,使对手不能预测自己的行动。确定性,使对手不能预测自己的行动。如,猜硬币、划拳。混合战略均衡混合战略均衡对参与人类型的一种推断。对参与人类型的一种推断。如监督博弈,老板不知道工人的类型,只知道“勤奋”、“懒惰”型工人各占50%。老板在选择自己 战略时仿佛面临的是一个选择混合战略的 工人。纳什定理:纳什定理:在一个由在一个由n n个博弈方的博弈个博弈方的博弈 中,如果中,如果n n是有限的

33、,且是有限的,且 S Si i 都是有限集都是有限集( (对对 i=1,n)i=1,n),则该博弈至少存在一个纳什均衡,但可能包含混合策略。则该博弈至少存在一个纳什均衡,但可能包含混合策略。奇数定理(奇数定理(Wilson,1971Wilson,1971):几乎所有有限博弈都有有限):几乎所有有限博弈都有有限奇数个纳什均衡。奇数个纳什均衡。纳什均衡的存在性纳什均衡的存在性,;,11nnuuSSG纳什均衡的存在性纳什均衡的存在性 占优均衡占优均衡 重复剔除的占优均衡重复剔除的占优均衡 纯战略纯战略NENE 混合战略混合战略NENEn前一个均衡是后一前一个均衡是后一个均衡的特例,后一个个均衡的特例

34、,后一个均衡是前一个的扩展。均衡是前一个的扩展。n上述四个均衡概念统称上述四个均衡概念统称为纳什均衡。为纳什均衡。占优均衡占优均衡重复剔除占优均衡重复剔除占优均衡纯战略纳什均衡纯战略纳什均衡混合战略纳什均衡混合战略纳什均衡多重均衡与协调多重均衡与协调 多重均衡的概念多重均衡的概念很多博弈具有多个纳什均衡,比如以上讲到的麦琪的礼物很多博弈具有多个纳什均衡,比如以上讲到的麦琪的礼物、性别战等,称为、性别战等,称为多重均衡。多重均衡。多重均衡降低博弈的解释力多重均衡降低博弈的解释力一方面无法知道哪个均衡一方面无法知道哪个均衡会出现,另一方面会发生真正出现的结果与均衡结果不一会出现,另一方面会发生真正

35、出现的结果与均衡结果不一致致在某些具有多重均衡的博弈中,各个博弈方偏好于不同的在某些具有多重均衡的博弈中,各个博弈方偏好于不同的均衡结果,如麦琪的礼物和性别博弈。均衡结果,如麦琪的礼物和性别博弈。那么,博弈方如何使自己偏好的均衡成为实际的均衡结果那么,博弈方如何使自己偏好的均衡成为实际的均衡结果呢?这就是呢?这就是多重均衡的协调问题多重均衡的协调问题。多重均衡与协调多重均衡与协调 帕累托上策均衡帕累托上策均衡风险上策均衡风险上策均衡聚点均衡聚点均衡相关均衡相关均衡一、帕累托上策均衡一、帕累托上策均衡有些博弈,虽然存在多个纳什均衡,但这些纳有些博弈,虽然存在多个纳什均衡,但这些纳什均衡可能有明显

36、的什均衡可能有明显的优劣差异优劣差异,所有博弈方都,所有博弈方都偏好其中同一个纳什均衡。换句话说,可能有偏好其中同一个纳什均衡。换句话说,可能有这些纳什均衡中的某一个,这些纳什均衡中的某一个,给所有博弈方带来给所有博弈方带来的利益,都大于其他所有纳什均衡会带来的利的利益,都大于其他所有纳什均衡会带来的利益益,此时,博弈方的选择倾向性就会是一致的,此时,博弈方的选择倾向性就会是一致的,各个博弈方不仅自己会选择该纳什均衡的策,各个博弈方不仅自己会选择该纳什均衡的策略,而且可以预料其他博弈方也会选择该纳什略,而且可以预料其他博弈方也会选择该纳什均衡的策略,因此不会有选择困难。均衡的策略,因此不会有选

37、择困难。用这种方法选择出来的纳什均衡,也称为用这种方法选择出来的纳什均衡,也称为“帕帕累托上策均衡累托上策均衡”。一、帕累托上策均衡一、帕累托上策均衡这个博弈中有两个纯策略纳什均衡,(战争,战争)和这个博弈中有两个纯策略纳什均衡,(战争,战争)和(和平,和平),显然后者帕累托优于前者,所以,(和(和平,和平),显然后者帕累托优于前者,所以,(和平,和平)是本博弈的一个帕累托上策均衡。平,和平)是本博弈的一个帕累托上策均衡。-5, -5-10, 88, -1010, 10战争战争和平和平国家国家2战争战争和平和平国国家家1战争与和平战争与和平为什么理性的国家之间不会选择战争,为什么理性的国家之间不会选择战争,但历史上会有那么多战争呢?但历史上会有那么多战争呢?n决策者考虑短期利益、个人或小集团利益;决策者考虑短期利益、个人或小集团利益;n决策者确实缺乏理性和理智;决策者确实缺乏理性和理智;n局部地区或特定时期的利益比上述博弈中所局部地区或特定时期的利益比上述博弈中所假设的要大等;假设的要大等;二、风险上策均衡二、风险上策均衡帕累托上策均衡并不是有强制力的法则帕累托上策均衡并不是有强制力的法则。有时候其他某种同样是合理的选择逻辑有时候其他某种同样是合理的选择逻辑的作用会超过帕累托效率的选择逻

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论