江西省高安市2022年中考适应性考试数学试题含解析_第1页
江西省高安市2022年中考适应性考试数学试题含解析_第2页
江西省高安市2022年中考适应性考试数学试题含解析_第3页
江西省高安市2022年中考适应性考试数学试题含解析_第4页
江西省高安市2022年中考适应性考试数学试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图所示,二次函数y=ax2+bx+c(a0)的图象经过点(1,2),且与x轴交点的横坐标分别为x1、x2,其中2x11,0 x21下列结论:4a2b+c0;2ab0;abc0;b2+8a4ac其中正确的结论有()A1个B2个C3个D4个2方程的解是( ).ABCD3如图,AD

2、是半圆O的直径,AD12,B,C是半圆O上两点若,则图中阴影部分的面积是( )A6B12C18D244如图是某个几何体的三视图,该几何体是()A三棱柱B三棱锥C圆柱D圆锥5在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()ABCD6已知:二次函数y=ax2+bx+c(a1)的图象如图所示,下列结论中:abc1;b+2a=1;a-b1其中正确的项有( )A2个B3个C4个D5个7下列各类数中,与数轴上的点

3、存在一一对应关系的是()A有理数 B实数 C分数 D整数8如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是( )A-5B-2C3D59已知是二元一次方程组的解,则m+3n的值是( )A4B6C7D810如图,AB为O的直径,C为O上的一动点(不与A、B重合),CDAB于D,OCD的平分线交O于P,则当C在O上运动时,点P的位置()A随点C的运动而变化B不变C在使PA=OA的劣弧上D无法确定二、填空题(共7小题,每小题3分,满分21分)11如图,在菱形ABCD中,DEAB于点E,cosA=,BE=4,则tanDBE的值

4、是_12如图,在RtABC中,ACB=90,将边BC沿斜边上的中线CD折叠到CB,若B=48,则ACB=_13如图,C为半圆内一点,O为圆心,直径AB长为1 cm,BOC=60,BCO=90,将BOC绕圆心O逆时针旋转至BOC,点C在OA上,则边BC扫过区域(图中阴影部分)的面积为_cm114如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(1,0),ABO=30,线段PQ的端点P从点O出发,沿OBA的边按OBAO运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为_15关于x的不等式组的整数解有4个,那么a的取值范围( )A4

5、a6B4a6C4a6D2a416如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为_17不等式组的非负整数解的个数是_三、解答题(共7小题,满分69分)18(10分)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆一月份该公司投入市场

6、的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为a%,三月底可使用的自行车达到7752辆,求a的值19(5分)如图,ABC中,D是AB上一点,DEAC于点E,F是AD的中点,FGBC于点G,与DE交于点H,若FG=AF,AG平分CAB,连接GE,GD求证:ECGGHD;20(8分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图(1)测试不合格人数的中位数是 (2)第二次测试合格人数为50人,

7、到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图21(10分)综合与实践猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG猜想证明(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为: ;(2)希望小组的同学发现,图1中的点E在边BC上运

8、动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”小丽:连接AF,图中出现新的等腰三角形,如AFB,小凯:不妨设图中不断变化的角BAF的度数为n,并设法用n表示图中的一些角,可证明结论请你参考同学们的思路,完成证明;(3)创新小组的同学在图1中,发现线段CGDF,请你说明理由;联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,ABC=,其余条件不变,请探究DFG的度数,并直接写出结果(用含的式子表示)22(10分)如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B两点,与X轴交于点C,与Y轴

9、交于点D,已知,A(n,1),点B的坐标为(2,m)(1)求反比例函数的解析式和一次函数的解析式;(2)连结BO,求AOB的面积;(3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是 23(12分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?24(14分)如图,以40m/s的速度将小球沿与地面成30角的方向击出时,小球的飞行路线是一条抛物线如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:

10、s)之间具有函数关系h10t5t1小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】首先根据抛物线的开口方向可得到a0,抛物线交y轴于正半轴,则c0,而抛物线与x轴的交点中,2x11、0 x21说明抛物线的对称轴在10之间,即x=1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断【详解】由图知:抛物线的开口向下,则a0;抛物线的对称轴x=1,且c0; 由图可得:当x=2时,y0,即4a2b+c0,故正确; 已知x=1,且a0,所以2ab0,故正确; 抛物线对

11、称轴位于y轴的左侧,则a、b同号,又c0,故abc0,所以不正确; 由于抛物线的对称轴大于1,所以抛物线的顶点纵坐标应该大于2,即:2,由于a0,所以4acb28a,即b2+8a4ac,故正确; 因此正确的结论是 故选:C【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键2、B【解析】直接解分式方程,注意要验根.【详解】解:=0,方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,解这个一元一次方程,得:x=,经检验,x=是原方程的解.故选B.【点睛】本题考查了解

12、分式方程,解分式方程不要忘记验根.3、A【解析】根据圆心角与弧的关系得到AOB=BOC=COD=60,根据扇形面积公式计算即可【详解】,AOB=BOC=COD=60.阴影部分面积=.故答案为:A.【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到AOB=BOC=COD=60.4、A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A考点:由三视图判定几何体.5、C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C6、B【解析】根据二次函数

13、的图象与性质判断即可【详解】由抛物线开口向上知: a1; 抛物线与y轴的负半轴相交知c1; 对称轴在y轴的右侧知:b1;所以:abc1,故错误;对称轴为直线x=-1,,即b=2a,所以b-2a=1.故错误;由抛物线的性质可知,当x=-1时,y有最小值,即a-b+c(),即abm(am+b)(m1),故正确;因为抛物线的对称轴为x=1, 且与x轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故正确;由图像可得,当x=2时,y1,即: 4a+2b+c1,故正确.故正确选项有,故选B.【点睛】本题二次函数的图象与性质,牢记公式和数形结合是解题

14、的关键.7、B【解析】根据实数与数轴上的点存在一一对应关系解答【详解】实数与数轴上的点存在一一对应关系,故选:B【点睛】本题考查了实数与数轴上点的关系,每一个实数都可以用数轴上唯一的点来表示,反过来,数轴上的每个点都表示一个唯一的实数,也就是说实数与数轴上的点一一对应.8、B【解析】当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k1时直线y=kx-2与线段AB有交点

15、,从而能得到正确选项【详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k1即k-3或k1所以直线y=kx-2与线段AB有交点,则k的值不可能是-2故选B【点睛】本题考查了一次函数y=kx+b(k0)的性质:当k0时,图象必过第一、三象限,k越大直线越靠近y轴;当k0时,图象必过第二、四象限,k越小直线越靠近y轴9、D【解析】分析:根据二元一次方程组的解,直接代入构成

16、含有m、n的新方程组,解方程组求出m、n的值,代入即可求解.详解:根据题意,将代入,得:,+,得:m+3n=8,故选D点睛:此题主要考查了二元一次方程组的解,利用代入法求出未知参数是解题关键,比较简单,是常考题型.10、B【解析】因为CP是OCD的平分线,所以DCP=OCP,所以DCP=OPC,则CDOP,所以弧AP等于弧BP,所以PA=PB从而可得出答案【详解】解:连接OP,CP是OCD的平分线,DCP=OCP,又OC=OP,OCP=OPC,DCP=OPC,CDOP,又CDAB,OPAB,PA=PB点P是线段AB垂直平分线和圆的交点,当C在O上运动时,点P不动故选:B【点睛】本题考查了圆心角

17、、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦二、填空题(共7小题,每小题3分,满分21分)11、1【解析】求出AD=AB,设AD=AB=5x,AE=3x,则5x3x=4,求出x,得出AD=10,AE=6,在RtADE中,由勾股定理求出DE=8,在RtBDE中得出代入求出即可,【详解】解:四边形ABCD是菱形,AD=AB,cosA=,BE=4,DEAB,设AD=AB=5x,AE=3x,则5x3x=4,x=1,即AD=10,AE=6,在RtADE中,由勾股定理得: 在RtBDE中,故答案为:1【点睛】本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE的长1

18、2、6【解析】B=48,ACB=90,所以A=42,DC是中线,所以BCD=B=48,DCA=A=48,因为BCD=DCB=48,所以ACB=48-46=6.13、【解析】根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可【详解】解:BOC=60,BCO=90,OBC=30,OC=OB=1则边BC扫过区域的面积为:故答案为【点睛】考核知识点:扇形面积计算.熟记公式是关键.14、4【解析】首先根据题意正确画出从OBA运动一周的图形,分四种情况进行计算:点P从OB时,路程是线段PQ的长;当点P从BC时,点Q从O运动到Q,计算OQ的长就是运动的路程;点P从CA时,点Q由Q向左运动,路程为Q

19、Q;点P从AO时,点Q运动的路程就是点P运动的路程;最后相加即可【详解】在RtAOB中,ABO=30,AO=1,AB=2,BO=当点P从OB时,如图1、图2所示,点Q运动的路程为,当点P从BC时,如图3所示,这时QCAB,则ACQ=90ABO=30BAO=60OQD=9060=30AQ=2AC,又CQ=,AQ=2OQ=21=1,则点Q运动的路程为QO=1,当点P从CA时,如图3所示,点Q运动的路程为QQ=2,当点P从AO时,点Q运动的路程为AO=1,点Q运动的总路程为:+1+2+1=4故答案为4.考点:解直角三角形15、C【解析】分析:先根据一元一次不等式组解出x的取值,再根据不等式组的整数解

20、有4个,求出实数a的取值范围详解: 解不等式,得 解不等式,得 原不等式组的解集为 只有4个整数解,整数解为: 故选C.点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a的取值范围.16、【解析】利用勾股定理求出斜边长,再利用面积法求出斜边上的高即可【详解】解:直角三角形的两条直角边的长分别为5,12,斜边为=13,三角形的面积=512=13h(h为斜边上的高),h=故答案为:【点睛】考查了勾股定理,以及三角形面积公式,熟练掌握勾股定理是解本题的关键17、1【解析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组

21、的解集【详解】解:解得:x,解得:x1,不等式组的解集为x1,其非负整数解为0、1、2、3、4共1个,故答案为1【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解三、解答题(共7小题,满分69分)18、(1)7000辆;(2)a的值是1【解析】(1)设一月份该公司投入市场的自行车x辆,根据损坏率不低于10%,可得不等量关系:一月初投入的自行车-一月底可用的自行车一月损坏的自行车列不等式求解;(2)根据三月底可使用的自行车达到7752辆,可得等量关系为:(二月份剩余的可用自

22、行车+三月初投入的自行车)三月份的损耗率=7752辆列方程求解.【详解】解:(1)设一月份该公司投入市场的自行车x辆,x(7500110)10%x,解得x7000,答:一月份该公司投入市场的自行车至少有7000辆;(2)由题意可得,7500(11%)+110(1+4a%)(1a%)=7752,化简,得a2250a+4600=0,解得:a1=230,a2=1,解得a80,a=1,答:a的值是1【点睛】本题考查了一元一次不等式和一元二次方程的实际应用,根据一月底的损坏率不低于10%找出不等量关系式解答(1)的关键;根据三月底可使用的自行车达到7752辆找出等量关系是解答(2)的关键.19、见解析【

23、解析】依据条件得出C=DHG=90,CGE=GED,依据F是AD的中点,FGAE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,CGE=GDE,利用AAS即可判定ECGGHD【详解】证明:AF=FG,FAG=FGA,AG 平分CAB,CAG=FAG,CAG=FGA,ACFGDEAC,FGDE,FGBC,DEBC,ACBC,F 是 AD 的中点,FGAE,H 是 ED 的中点FG 是线段 ED 的垂直平分线,GE=GD,GDE=GED,CGE=GDE,ECGGHD(AAS)【点睛】本题考查了全等三角形的判定,线段垂直平分线的判定与性质,熟练掌握全等三角形的判定定理是解决问题的关键20、

24、(1)1;(2)这两次测试的平均增长率为20%;(3)55%【解析】(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数参加测试的总人数100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解【详解】解:(1)将四次测试结果排序,得:30,40,50,60,测试不合

25、格人数的中位数是(40+50)21故答案为1;(2)每次测试不合格人数的平均数为(60+40+30+50)41(人),第四次测试合格人数为121872(人)设这两次测试的平均增长率为x,根据题意得:50(1+x)272,解得:x10.220%,x22.2(不合题意,舍去),这两次测试的平均增长率为20%;(3)50(1+20%)60(人),(60+40+30+50)(38+60+50+40+60+30+72+50)100%1%,11%55%补全条形统计图与扇形统计图如解图所示【点睛】本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义

26、;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据21、 (1) GF=GD,GFGD;(2)见解析;(3)见解析;(4) 90.【解析】(1)根据四边形ABCD是正方形可得ABD=ADB=45,BAD=90,点D关于直线AE的对称点为点F,即可证明出DBF=90,故GFGD,再根据F=ADB,即可证明GF=GD;(2)连接AF,证明AFG=ADG,再根据四边形ABCD是正方形,得出AB=AD,BAD=90,设BAF=n,FAD=90+n,可得出FGD=360FADAFGADG=360(90+n)(180n)=90,故GFGD;(3)连接BD,由(2)

27、知,FG=DG,FGDG,再分别求出GFD与DBC的角度,再根据三角函数的性质可证明出BDFCDG,故DGC=FDG,则CGDF;(4)连接AF,BD,根据题意可证得DAM=902=901,DAF=2DAM=18021,再根据菱形的性质可得ADB=ABD=,故AFB+DBF+ADB+DAF=(DFG+1)+(DFG+1+)+(18021)=360,2DFG+21+21=180,即可求出DFG【详解】解:(1)GF=GD,GFGD,理由:四边形ABCD是正方形,ABD=ADB=45,BAD=90,点D关于直线AE的对称点为点F,BAD=BAF=90,F=ADB=45,ABF=ABD=45,DBF

28、=90,GFGD,BAD=BAF=90,点F,A,D在同一条线上,F=ADB,GF=GD,故答案为GF=GD,GFGD;(2)连接AF,点D关于直线AE的对称点为点F,直线AE是线段DF的垂直平分线,AF=AD,GF=GD,1=2,3=FDG,1+3=2+FDG,AFG=ADG,四边形ABCD是正方形,AB=AD,BAD=90,设BAF=n,FAD=90+n,AF=AD=AB,FAD=ABF,AFB+ABF=180n,AFB+ADG=180n,FGD=360FADAFGADG=360(90+n)(180n)=90,GFDG,(3)如图2,连接BD,由(2)知,FG=DG,FGDG,GFD=GD

29、F=(180FGD)=45,四边形ABCD是正方形,BC=CD,BCD=90,BDC=DBC=(180BCD)=45,FDG=BDC,FDGBDG=BDCBDG,FDB=GDC,在RtBDC中,sinDFG=sin45=,在RtBDC中,sinDBC=sin45=,BDFCDG,FDB=GDC,DGC=DFG=45,DGC=FDG,CGDF;(4)90,理由:如图3,连接AF,BD,点D与点F关于AE对称,AE是线段DF的垂直平分线,AD=AF,1=2,AMD=90,DAM=FAM,DAM=902=901,DAF=2DAM=18021,四边形ABCD是菱形,AB=AD,AFB=ABF=DFG+1,BD是菱形的对角线,ADB=ABD=,在四边形ADBF中,AFB+DBF+ADB+DAF=(DFG+1)+(DFG+1+)+(18021)=3602DFG+21+21=180,DFG=90【点睛】本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.22、(1)y=;y=x;(2);(1)2x0或x1;【解析】(1)过A作AMx轴于M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论