湖北襄阳五中学实验中学2022年中考冲刺卷数学试题含解析_第1页
湖北襄阳五中学实验中学2022年中考冲刺卷数学试题含解析_第2页
湖北襄阳五中学实验中学2022年中考冲刺卷数学试题含解析_第3页
湖北襄阳五中学实验中学2022年中考冲刺卷数学试题含解析_第4页
湖北襄阳五中学实验中学2022年中考冲刺卷数学试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是()ABCD2如图,在平面直角坐标系中,把ABC绕原点O旋转180得到CDA,点A,B,C的坐标分别为(5,2),(2,2),(5,2),则点D的坐标为()A(

2、2,2)B(2,2)C(2,5)D(2,5)3如图,已知的周长等于 ,则它的内接正六边形ABCDEF的面积是( )ABCD4已知:如图是yax2+2x1的图象,那么ax2+2x10的根可能是下列哪幅图中抛物线与直线的交点横坐标()ABCD5如图,空心圆柱体的左视图是( )ABCD6已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是A8B9C10D127一次函数的图象不经过( )A第一象限B第二象限C第三象限D第四象限8方程(m2)x2+3mx+1=0是关于x的一元二次方程,则( )Am2Bm=2Cm=2Dm29轮船沿江从港顺流行驶到港,比从港返回港少用3

3、小时,若船速为26千米/时,水速为2千米/时,求港和港相距多少千米. 设港和港相距千米. 根据题意,可列出的方程是( ).ABCD10如图,P为O外一点,PA、PB分别切O于点A、B,CD切O于点E,分别交PA、PB于点C、D,若PA6,则PCD的周长为()A8B6C12D10二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k0,x0)的图象过点B,E若AB=2,则k的值为_ 12一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输

4、出的结果为127,则输入的最小正整数是_13设、是一元二次方程的两实数根,则的值为 .14如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_.15比较大小:_116方程的解是_.三、解答题(共8题,共72分)17(8分)在平面直角坐标系xOy中,点M的坐标为,点N的坐标为,且,我们规定:如果存在点P,使是以线段MN为直角边的等腰直角三角形,那么称点P为点M、N的“和谐点”. (1)已知点A的坐标为,若点B的坐标为,在直线AB的上方,存在点A,B的“和谐点”C,直接写出点C的坐标;点C在直线x5上,且点C为点A,B的“和谐点

5、”,求直线AC的表达式.(2)O的半径为r,点为点、的“和谐点”,且DE2,若使得与O有交点,画出示意图直接写出半径r的取值范围.18(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有论语、大学、中庸(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛小礼诵读论语的概率是 ;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率19(8分)进入冬季,某商家根据市民健康需要,

6、代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包若供货厂家规定市场价不得低于30元/包试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?20(8分)如图1,图2分别是某款篮球架的实物图与示意图,已知底座BC=1.5米,底座BC与支架AC所成的角ACB=60,支架AF的长为2.50米,篮板顶端F点到篮筐D的

7、距离FD=1.3米,篮板底部支架HE与支架AF所成的角FHE=45,求篮筐D到地面的距离(精确到0.01米参考数据:1.73,1.41)21(8分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DFDE,交OA于点F,连结EF已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒如图1,当t=3时,求DF的长如图2,当点E在线段AB上移动的过程中,DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tanDEF的值连结AD,当AD将DEF分成的两部分的面积之比为1:2时,

8、求相应的t的值22(10分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.23(12分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE

9、正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长24如图1,反比例函数(x0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,BAC75,ADy轴,垂足为D(1)求k的值;(2)求tanDAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线lx轴,与AC相交于点N,连接CM,求CMN面积的最大值参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据题意找到从左面看得

10、到的平面图形即可【详解】这个立体图形的左视图是,故选:B【点睛】本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置2、A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(2,2),即可得出D的坐标为(2,2)详解:点A,C的坐标分别为(5,2),(5,2),点O是AC的中点,AB=CD,AD=BC,四边形ABCD是平行四边形,BD经过点O,B的坐标为(2,2),D的坐标为(2,2),故选A点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标3、C【解析】过点O作OHAB于点H,连接OA,OB,由

11、O的周长等于6cm,可得O的半径,又由圆的内接多边形的性质可得AOB=60,即可证明AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6SOAB即可得出答案【详解】过点O作OHAB于点H,连接OA,OB,设O的半径为r,O的周长等于6cm,2r=6,解得:r=3,O的半径为3cm,即OA=3cm,六边形ABCDEF是正六边形,AOB=360=60,OA=OB,OAB是等边三角形,AB=OA=3cm,OHAB,AH=AB,AB=OA=3cm,AH=cm,OH=cm,S正六边形ABCDEF=6SOAB=63=(cm2)故选C.【点睛】此题考查了正多边形与圆的性质此

12、题难度适中,注意掌握数形结合思想的应用4、C【解析】由原抛物线与x轴的交点位于y轴的两端,可排除A、D选项;B、方程ax2+2x1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B不符合题意;C、抛物线y=ax2与直线y=2x+1的交点,即交点的横坐标为方程ax2+2x1=0的根,C符合题意此题得解【详解】抛物线y=ax2+2x1与x轴的交点位于y轴的两端,A、D选项不符合题意;B、方程ax2+2x1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B选项不符合题意;C、图中交点的横坐标为方程ax2+2x1=0的根(抛物线y=ax2与直线y=2x+1的交点),C选项符合题意故选:C【点睛

13、】本题考查了抛物线与x轴的交点以及二次函数的图象与位置变化,逐一分析四个选项中的图形是解题的关键5、C【解析】根据从左边看得到的图形是左视图,可得答案【详解】从左边看是三个矩形,中间矩形的左右两边是虚线,故选C【点睛】本题考查了简单几何体的三视图,从左边看得到的图形是左视图6、A【解析】试题分析:设这个多边形的外角为x,则内角为3x,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数解:设这个多边形的外角为x,则内角为3x,由题意得:x+3x=180,解得x=45,这个多边形的边数:36045=8,故选A考点:多边形内角与外角7、B【

14、解析】由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限【详解】解:,函数图象一定经过一、三象限;又,函数与y轴交于y轴负半轴,函数经过一、三、四象限,不经过第二象限故选B【点睛】此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响8、D【解析】试题分析:根据一元二次方程的概念,可知m-20,解得m2.故选D9、A【解析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系,据此列出方程即可【详解】解:设A港和B港相距x千米,可得方程:故选:A【点睛

15、】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度10、C【解析】由切线长定理可求得PAPB,ACCE,BDED,则可求得答案【详解】PA、PB分别切O于点A、B,CD切O于点E,PAPB6,ACEC,BDED,PC+CD+PDPC+CE+DE+PDPA+AC+PD+BDPA+PB6+612,即PCD的周长为12,故选:C【点睛】本题主要考查切线的性质,利用切线长定理求得PAPB、ACCE和BDED是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】解:设E(x,x),B(2

16、,x+2),反比例函数 (k0,x0)的图象过点B. E.x2=2(x+2), ,(舍去), ,故答案为12、15【解析】分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值详解: 当y=127时, 解得:x=43;当y=43时,解得:x=15;当y=15时, 解得 不符合条件则输入的最小正整数是15.故答案为15.点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.13、27【解析】试题分析:根据一元二次方程根与系数的关系,可知+=5,=-1,因此可知=-2=25+2=27.故答案为27.点睛:此题主要考查了一元二次方程根与系数的关系,解

17、题时灵活运用根与系数的关系:,确定系数a,b,c的值代入求解,然后再通过完全平方式变形解答即可.14、(-2,-2)【解析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标【详解】“卒”的坐标为(2,2),故答案是:(2,2)【点睛】考查了坐标确定位置,关键是正确确定原点位置15、【解析】先将1化为根号的形式,根据被开方数越大值越大即可求解【详解】解: , ,故答案为【点睛】本题考查实数大小的比较,比较大小时,常用的方法有:作差法,作商法,如果有一个是二次根式,要把另一个也化为二次根式的形式,根据被开方数的大小进行比较16、.【解析】根据解分式方程的步骤依次计算可得

18、.【详解】解:去分母,得:,解得:,当时,所以是原分式方程的解,故答案为:.【点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:去分母;求出整式方程的解;检验;得出结论.三、解答题(共8题,共72分)17、(1)点C坐标为或;yx2或yx3;(2)或【解析】(1)根据“和谐点”的定义即可解决问题;首先求出点C坐标,再利用待定系数法即可解决问题;(2)分两种情形画出图形即可解决问题【详解】(1)如图1观察图象可知满足条件的点C坐标为C(1,5)或C(3,5);如图2由图可知,B(5,3)A(1,3),AB=3ABC为等腰直角三角形,BC=3,C1(5,7)或C2(5,1)设直线

19、AC的表达式为y=kx+b(k0),当C1(5,7)时,y=x+2,当C2(5,1)时,y=x+3综上所述:直线AC的表达式是y=x+2或y=x+3(2)分两种情况讨论:当点F在点E左侧时:连接OD则OD=,当点F在点E右侧时:连接OE,ODE(1,2),D(1,3),OE=,OD=,综上所述:或【点睛】本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的首先思考问题,属于中考压轴题18、(1);(2)【解析】(1)利用概率公式直接计算即可;(2)列举出所有情况,看小明和小亮诵读两个不同材料

20、的情况数占总情况数的多少即可【详解】(1)诵读材料有论语,三字经,弟子规三种,小明诵读论语的概率=,(2)列表得:小明小亮ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种 所以小明和小亮诵读两个不同材料的概率=【点睛】本题考查了用列表法或画树形图发球随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的易错点19、(1)y=5x+350;(2)w=5x2+450 x7000(30 x40);(3)当售价定为45元时,商场每周销售这

21、种防尘口罩所获得的利润w(元)最大,最大利润是1元【解析】试题分析:(1)根据题意可以直接写出y与x之间的函数关系式;(2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;(3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题试题解析:解:(1)由题意可得:y=200(x30)5=5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=5x+350;(2)由题意可得,w=(x20)(5x+ 350)=5x2+450 x7000(30 x70),即商场每周销售这种防尘口罩所获得

22、的利润w(元)与售价x(元/包)之间的函数关系式是:w=5x2+450 x7000(30 x40);(3)w=5x2+450 x7000=5(x45)2+1二次项系数50,x=45时,w取得最大值,最大值为1答:当售价定为45元时,商场每周销售这种防尘口罩所获得的利润最大,最大利润是1元点睛:本题考查了二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值20、3.05米【解析】延长FE交CB的延长线于M, 过A作AGFM于G, 解直角三角形即可得到正确结论【详解】解:如图:延长FE交CB的延长线于M,过A作AGFM于G,在RtABC中,t

23、anACB=,AB=BCtan60=1.51.73=2.595,GM=AB=2.595,在RtAGF中,FAG=FHE=45,sinFAG=,sin45=,FG=1.76,DM=FG+GMDF3.05米答:篮框D到地面的距离是3.05米【点睛】本题主要考查直角三角形和三角函数,构造合适的辅助线是本题解题的关键21、(1)3;(2)DEF的大小不变,tanDEF=;(3)或【解析】(1)当t=3时,点E为AB的中点,A(8,0),C(0,6),OA=8,OC=6,点D为OB的中点,DEOA,DE=OA=4,四边形OABC是矩形,OAAB,DEAB,OAB=DEA=90,又DFDE,EDF=90,

24、四边形DFAE是矩形,DF=AE=3;(2)DEF的大小不变;理由如下:作DMOA于M,DNAB于N,如图2所示:四边形OABC是矩形,OAAB,四边形DMAN是矩形,MDN=90,DMAB,DNOA,, ,点D为OB的中点,M、N分别是OA、AB的中点,DM=AB=3,DN=OA=4,EDF=90,FDM=EDN,又DMF=DNE=90,DMFDNE,EDF=90,tanDEF=;(3)作DMOA于M,DNAB于N,若AD将DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;当点E到达中点之前时,如图3所示,NE=3t,由DMFDNE得:MF=(3t),AF=4+MF

25、=t+,点G为EF的三等分点,G(,),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得: ,解得: ,直线AD的解析式为y=x+6,把G(,)代入得:t=;当点E越过中点之后,如图4所示,NE=t3,由DMFDNE得:MF=(t3),AF=4MF=t+,点G为EF的三等分点,G(,),代入直线AD的解析式y=x+6得:t=;综上所述,当AD将DEF分成的两部分的面积之比为1:2时,t的值为或.考点:四边形综合题.22、(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标【解析】试题分析:(1)设

26、这两年该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,根据题意得:700(1+x)2=1183,解得:x1=0.3=30%,x2=2.3(舍去),答:这两年该市推行绿色建筑面积的年平均增长率为30%;(2)根据题意得:1183(1+30%)=1537.9(万平方米),1537.91500,2017年该市能完成计划目标【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解23、路灯高CD为5.1米【解析】根据AMEC,CDEC,BNEC,EAMA得到MACDBN,从而得到ABNACD,利用相似三角形对应边的比相等列出比例式求解即可【详解】设CD长为x米,A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论