高二竞赛班第1讲-运动的描述教师版_第1页
高二竞赛班第1讲-运动的描述教师版_第2页
高二竞赛班第1讲-运动的描述教师版_第3页
高二竞赛班第1讲-运动的描述教师版_第4页
高二竞赛班第1讲-运动的描述教师版_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 PAGE 12 讲述高端的,真正的物理学高二物理竞赛春季班第1讲学生版PAGE 13 高二物理竞赛秋季班第1讲学生版 讲述高端的,真正的物理学第1讲 运动的描述运动学复习本讲导学 物理学是用数学描述自然现象的学科。所以的描述中,运动是最基本最常见的。运动的描述,本质还是物体的描述与空间的描述,本讲系统讲述对描述的数学语言。知识模块知识点睛一坐标系1.定坐标系:建立在固定参考物上的坐标系,简称定系。一般将定系固结在地面上。2.动坐标系:建立在相对于定系运动着的物体上的坐标系,简称动系。动系有平动系与转动系之分,注意区分。注意质点不能成为一个参考系。二动点 动点是指相对于定系和动系均有运动的点,

2、如图车轮上的一点P作为动点。三种运动及三种速度与三种加速度1.运动定义:绝对运动:动点相对于定系的运动,如P相对于地面的运动。相对运动:动点相对动系的运动,如P相对于车厢的运动。牵连运动:动系相对于定系的运动,如行驶的汽车相对于地面的运动。关联关系:1)动点在某瞬时的绝对速度等于它在该瞬时的牵连速度与相对速度的矢量和。记为: 如图:加速度关联比较复杂:A:如果牵连运动为平动:动点在某瞬时的绝对加速度等于它在该瞬时的牵连加速度与相对加速度的矢量和。记为: B:如果牵连运动为转:动点在某瞬时的绝对加速度等于它在该瞬时的牵连加速度与相对加速度以及科氏加速度的矢量和。记为:其中科氏加速度如图: 以上只

3、是物理定义,具体到不同的坐标系中,方程的数学表达会有所不同。我们在以前的课程中介绍过直角坐标系,极坐标系,自然坐标系。这里再引入另一个坐标系。附录1.球坐标 在空间任取一点O作为极点,从O引两条互相垂直的射线ox和oz作为极轴,再规定一个长度单位和射线ox绕oz轴旋转所成角的正方向, 这样就建立了一个球坐标系. 球坐标是一种三维坐标。分别有原点、方位角、仰角、距离构成。设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,来确定,其中r为原点O与点P间的距离,为有向线段与z轴正向所夹的角,为从正z轴来看自x轴按逆时针方向转到有向线段在坐标平面xoy的投影所转过的角,这里M为点P在x

4、Oy面上的投影。这样的三个数r,叫做点P的球面坐标,这里r,的变化范围为r0,+),0, 2,0, .2.立体角定义:一个任意形状椎面所包含的空间称为立体角。符号: 单位:Sr (球面度)如图所示,A是半径为R的球面的一部分,A的边缘各点对球心O连线所包围的那部分空间叫立体角。立体角的数值为部分球面面积A与球半径平方之比,即 单位立体角:以O为球心、R为半径作球,若立体角截出的球面部分的面积为R2,则此球面部分所对应的立体角称为一个单位立体角,或一球面度。对于一个给定顶点O 和一个随意方向的微小面积dS ,它们对应的立体角为其中为dS 与投影面积 dA的夹角,R为O 到dS中心的距离。 例题精

5、讲第一部分:数学描述能力训练【例1】(1)某人不喜欢吃苹果皮,但是更懒得削苹果皮。假设苹果是球形的,他将苹果切成等厚度的薄片,求证他在每片苹果上吃到的苹果皮的量是一样多的(2)某个国家的范围是北纬30度到北纬31度,经度范围是东经65度到66度,这个国家的领土占地球的比例大约为多少?近似计算,精确到2位有效数字。)【例2】一位盲人将枪端平,开始打靶。由于看不见,他将随机向平面中任意一个方向打出子弹。一面墙在离他的距离为d。从人到墙做垂线,将垂足记为原点,计算从x到x+dx的范围内墙面被子弹击中的概率。【例3】上一题中的盲人跑到了太空站中,向随机的方向打出子弹,墙和他的间距为d,原点保持不变,建

6、立平面直角坐标系x-y,从x到x+dx,y到y+dy的范围内,墙面被子弹击中的概率为多少?【例4】建立极坐标,在 SKIPIF 1 0 上定义发向与切向的单位向量 SKIPIF 1 0 。写出从极点到 SKIPIF 1 0 点的位移矢量,用 SKIPIF 1 0 , SKIPIF 1 0 表达。假设一个质点以角速度 SKIPIF 1 0 做匀速原周运动,那么 SKIPIF 1 0 和 SKIPIF 1 0 一样都是时间的函数。求出 SKIPIF 1 0 。用 SKIPIF 1 0 和 SKIPIF 1 0 (及其导数)表达质点的运动速度用 SKIPIF 1 0 和 SKIPIF 1 0 (及其

7、导数)表达质点运动的加速度用以上的方法写出极坐标下的牛顿第二定律的表达形式第二部分 物理应用【例5】在匀强磁场B中,有一个带点量为q,质量为m的粒子,在垂直于的磁场的平面内运动。粒子初速度为 SKIPIF 1 0 。利用上一题中的 SKIPIF 1 0 表达牛顿第二定律,并求出 SKIPIF 1 0 。如果粒子受到恒定的于粒子速度方向相反的阻力 SKIPIF 1 0 ,写出牛顿第二定律,并计算出粒子的速度随时间的关系。接(2)计算出粒子运动的轨迹(用参数方程描述)如果粒子受到的阻力为 SKIPIF 1 0 ,求出粒子从开始运动到停下来走过的路程。【例6】一个半径为 SKIPIF 1 0 的钢球

8、固定在空间中,一束以速度为 SKIPIF 1 0 运动的质量为 SKIPIF 1 0 的小粒子撞向钢球,单位时间单位面积上通过的粒子数为 SKIPIF 1 0 。粒子和钢球之间发成完全弹性碰撞。(1)某个粒子的初速度的延长线与球心的距离为 SKIPIF 1 0 ,则这个粒子碰撞后的速度方向改变的夹角 SKIPIF 1 0 为多少?(2)在距离很远的地方有一堵垂直于粒子束的墙面,在粒子出射角为 SKIPIF 1 0 的方向,单位墙面上单位时间内单位方向上接受到粒子的数量为多少?【例7】如图所示,杆AB搁置在半径为R的半圆柱上,A端沿水平面以等速V作直线运动,图示瞬间,杆与水平面夹角为,杆上C点与

9、半圆柱体D点相切,此时杆上C点的速度大小为多少?此时在圆柱体上D点的速度的大小又为多少?C点加速度多少?【例8】如图所示,杆 SKIPIF 1 0 长为 SKIPIF 1 0 ,可绕过 SKIPIF 1 0 点的水平轴在竖直平面内转动,其端点 SKIPIF 1 0 系着一跨过定滑轮 SKIPIF 1 0 、 SKIPIF 1 0 的不可伸长的轻绳,绳的另一端系一物块 SKIPIF 1 0 ,滑轮的半径可忽略, SKIPIF 1 0 在 SKIPIF 1 0 的正上方, SKIPIF 1 0 之间的距离为 SKIPIF 1 0 。某一时刻,当绳的 SKIPIF 1 0 段与 SKIPIF 1 0

10、 之间的夹角为 SKIPIF 1 0 时,杆的角速度恒定为 SKIPIF 1 0 ,求此时物块 SKIPIF 1 0 的速率 SKIPIF 1 0 以及加速度aM【例9】杆AC沿槽以匀速 SKIPIF 1 0 向上运动,并带动杆AB及滑块B。若AB SKIPIF 1 0 ,且初瞬时 SKIPIF 1 0 .求当 SKIPIF 1 0 SKIPIF 1 0 时,滑块B沿滑槽滑动的速度。 解答: SKIPIF 1 0 对时间求一阶导数,有 SKIPIF 1 0 在坐标系 SKIPIF 1 0 中,A点的坐标为 SKIPIF 1 0 代入上式,得 SKIPIF 1 0 代入 SKIPIF 1 0 S

11、KIPIF 1 0 ,则有滑块B的速度为 SKIPIF 1 0 其方向沿 SKIPIF 1 0 轴正向。【例10】半径为R的半圆形凸轮D,已知其运动的速度为 SKIPIF 1 0 、加速度为 SKIPIF 1 0 ,方向如图(a)所示。凸轮推动杆AB沿铅直方向运动。试求当 SKIPIF 1 0 时,杆AB移动的速度和加速度以及A相对凸轮的速度。 SKIPIF 1 0 确答:取杆AB上的A点为动点,动系为凸轮D,定系为地面。动点的绝对运动轨迹为铅垂线,相对运动轨迹为凸轮的轮廓线,即半径为R的圆曲线、牵连运动为平动。(1)求速度动点A的速度矢量图如图(c)所示。根据速度合成定理,有 SKIPIF

12、1 0 (1)取投影轴 SKIPIF 1 0 如图(c)所示。将式(1)分别在 SKIPIF 1 0 轴上投影,则有 SKIPIF 1 0 (2) SKIPIF 1 0 (3)于是,杆AB移动的速度也即动点A的绝对速度为 SKIPIF 1 0 杆AB相对于凸轮的相对速度为 SKIPIF 1 0 (2)求加速度加速度矢量图如图(d)所示。由动系作平动时的加速度合成定理,有 SKIPIF 1 0 (4)取投影轴 SKIPIF 1 0 如图(d)所示。将式(4)分别在 SKIPIF 1 0 轴方向投影,有 SKIPIF 1 0 上式中 SKIPIF 1 0 ,由式(6),有 SKIPIF 1 0 所

13、以 SKIPIF 1 0 由式(5),有 SKIPIF 1 0 于是杆AB移动的加速度也即动点A的绝对加速度为 SKIPIF 1 0 AB相对于凸轮的加速度为 SKIPIF 1 0 SKIPIF 1 0 课后小练习1.考虑点电荷产生周围的静电场假设平方反比率不再成立,而是 SKIPIF 1 0 ,那么高斯定律是否还会成立?在这种情况下一个金属球壳的内部是否一定没有电荷分布?电场是否一定为0?假设三维空间变成了二维,要求高斯定律依然成立,则电场分布的形式满足什么形式?一个“金属球壳”(实际上是圆环)内部是否一定没有电荷分布?电场是否一定为0?趣味物理 量子力学史量子理论的主要创立者都是年轻人。1

14、925年,泡利25岁,海森堡和恩里克费米(Enrico Fermi)24岁,狄拉克和约当23岁。薛定谔是一个大器晚成者,36岁。玻恩和玻尔年龄稍大一些,值得一提的是他们的贡献大多是阐释性的。爱因斯坦的反应反衬出量子力学这一智力成果深刻而激进的属性:他拒绝自己发明的导致量子理论的许多关键的观念,他关于玻色-爱因斯坦统计的论文是他对理论物理的最后一项贡献,也是对物理学的最后一项重要贡献。1923年路易德布罗意(Louis de Broglie)在他的博士论文中提出光的粒子行为与粒子的波动行为应该是对应存在的。他将粒子的波长和动量联系起来:动量越大,波长越短。这是一个引人入胜的想法,但没有人知道粒子

15、的波动性意味着什么,也不知道它与原子结构有何联系。然而德布罗意的假设是一个重要的前奏,很多事情就要发生了。1924年夏天,出现了又一个前奏。萨地扬德拉N玻色(Satyendra N. Bose)提出了一种全新的方法来解释普朗克辐射定律。他把光看作一种无(静)质量的粒子(现称为光子)组成的气体,这种气体不遵循经典的玻耳兹曼统计规律,而遵循一种建立在粒子不可区分的性质(即全同性)上的一种新的统计理论。爱因斯坦立即将玻色的推理应用于实际的有质量的气体从而得到一种描述气体中粒子数关于能量的分布规律,即著名的玻色-爱因斯坦分布。然而,在通常情况下新老理论将预测到原子气体相同的行为。爱因斯坦在这方面再无兴

16、趣,因此这些结果也被搁置了10多年。然而,它的关键思想粒子的全同性,是极其重要的。突然,一系列事件纷至沓来,最后导致一场科学革命。从1925年元月到1928年元月:沃尔夫刚泡利(Wolfgang Pauli)提出了不相容原理,为周期表奠定了理论基础。韦纳海森堡(Werner Heisenberg)、马克斯玻恩(Max Born)和帕斯库尔约当(Pascual Jordan)提出了量子力学的第一个版本,矩阵力学。人们终于放弃了通过系统的方法整理可观察的光谱线来理解原子中电子的运动这一历史目标。HYPERLINK http:/ Schrodinger)提出了量子力学的第二种形式,波动力学。在波动力

17、学中,体系的状态用薛定谔方程的解波函数来描述。矩阵力学和波动力学貌似矛盾,实质上是等价的。电子被证明遵循一种新的统计规律,费米-狄拉克统计。人们进一步认识到所有的粒子要么遵循费米-狄拉克统计,要么遵循玻色-爱因斯坦统计,这两类粒子的基本属性很不相同。海森堡阐明测不准原理。保尔AM狄拉克(Paul A. M. Dirac)提出了相对论性的波动方程用来描述电子,解释了电子的自旋并且预测了反物质。狄拉克提出电磁场的量子描述,建立了量子场论的基础。玻尔提出互补原理(一个哲学原理),试图解释量子理论中一些明显的矛盾,特别是波粒二象性。创立量子力学需要新一代物理学家并不令人惊讶,开尔文爵士在祝贺玻尔191

18、3年关于氢原子的论文的一封书信中表述了其中的原因。他说,玻尔的论文中有很多真理是他所不能理解的。开尔文认为基本的新物理学必将出自无拘无束的头脑。1928年,革命结束,量子力学的基础本质上已经建立好了。后来,Abraham Pais以轶事的方式记录了这场以狂热的节奏发生的革命。其中有一段是这样的:1925年,Samuel Goudsmit和George Uhlenbeck就提出了电子自旋的概念,玻尔对此深表怀疑。10月玻尔乘火车前往荷兰的莱顿参加亨德里克A洛伦兹(Hendrik A. Lorentz)的50岁生日庆典,泡利在德国的汉堡碰到玻尔并探询玻尔对电子自旋可能性的看法;玻尔用他那著名的低调评价的语言回答说,自旋这一提议是“非常,非常有趣的”。后来,爱因斯坦和Paul Ehrenfest在莱顿碰到了玻尔并讨论了自旋。玻尔说明了自己的反对意见,但是爱因斯坦展示了自旋的一种方式并使玻尔成为自旋的支持者。在玻尔的返程中,遇到了更多的讨论者。当火车经过德国的哥挺

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论