2022年四川省宜宾市达标名校中考数学最后冲刺模拟试卷含解析_第1页
2022年四川省宜宾市达标名校中考数学最后冲刺模拟试卷含解析_第2页
2022年四川省宜宾市达标名校中考数学最后冲刺模拟试卷含解析_第3页
2022年四川省宜宾市达标名校中考数学最后冲刺模拟试卷含解析_第4页
2022年四川省宜宾市达标名校中考数学最后冲刺模拟试卷含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题

2、目要求的)1甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是( )A甲的速度是70米/分B乙的速度是60米/分C甲距离景点2100米D乙距离景点420米2如图,PA,PB分别与O相切于A,B两点,若C65,则P的度数为( )A65B130C50D1003在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同通过多次摸

3、球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A16个B15个C13个D12个42的绝对值是( )A2BCD5在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数46487250650082499650007根据列表,可以估计出 m 的值是( )A5B10C15D206下列四个图形分别是四届国际数学家大会的会标,其中属于中心

4、对称图形的有( )A1个B2个C3个D4个7在半径等于5 cm的圆内有长为cm的弦,则此弦所对的圆周角为A60B120C60或120D30或1208如图,ABCD,点E在线段BC上,CD=CE,若ABC=30,则D为()A85B75C60D309据统计,第22届冬季奥林匹克运动会的电视转播时间长达88000小时,社交网站和国际奥委会官方网站也创下冬奥会收看率纪录用科学记数法表示88000为()A0.88105 B8.8104 C8.8105 D8.810610如图所示,点E在AC的延长线上,下列条件中能判断ABCD的是( )A3=ABD=DCEC1=2DD+ACD=18011如图,一束平行太阳

5、光线FA、GB照射到正五边形ABCDE上,ABG46,则FAE的度数是()A26B44C46D7212如图,ACB90,ACBC,ADCE,BECE,若AD3,BE1,则DE( )A1B2C3D4二、填空题:(本大题共6个小题,每小题4分,共24分)13化简:_14如图,已知ABC和ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB4,则OE的最小值为_15某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg16如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上

6、的两个动点,AE=2,AEQ沿EQ翻折形成FEQ,连接PF,PD,则PF+PD的最小值是_17如图,点A的坐标为(3,),点B的坐标为(6,0),将AOB绕点B按顺时针方向旋转一定的角度后得到AOB,点A的对应点A在x轴上,则点O的坐标为_18如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若DEF的面积为,则k的值_ 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图1,在ABC中,点P为边AB所在直线上一点,连结CP,M为线段CP的中点,若满足ACPMBA,则称点P为ABC的“好点”(1)如图2,当ABC

7、90时,命题“线段AB上不存在“好点”为 (填“真”或“假”)命题,并说明理由;(2)如图3,P是ABC的BA延长线的一个“好点”,若PC4,PB5,求AP的值;(3)如图4,在RtABC中,CAB90,点P是ABC的“好点”,若AC4,AB5,求AP的值20(6分)如图,在ABCD中,AEBC交边BC于点E,点F为边CD上一点,且DFBE.过点F作FGCD,交边AD于点G.求证:DGDC21(6分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图,连接AC、OD,设OAC=,请用表示AOD;(2)如图,当点B为的中点时,求点A、D之间的距离:(3)如

8、果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE的长22(8分)(1)2018+()123(8分)如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FGBE交AE于点G(1)求证:GF=BF;(2)若EB=1,BC=4,求AG的长;(3)在BC边上取点M,使得BM=BE,连接AM交DE于点O求证:FOED=ODEF24(10分)孙子算经是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣孙子算经记载“今有妇人河上荡杯津吏问曰:杯何以多?妇人曰:家有客津吏曰:客几何?妇人曰:二人共饭,三人共羹,四人共肉,凡用杯六

9、十五不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”25(10分)如图,在平行四边形ABCD中,DBAB,点E是BC边的中点,过点E作EFCD,垂足为F,交AB的延长线于点G(1)求证:四边形BDFG是矩形;(2)若AE平分BAD,求tanBAE的值26(12分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F求证:ADEBFE;若DF平分ADC,连接CE试判断CE和DF的位置关系,并说明理由27(12分)如图,BD是矩形ABCD的一条对角线(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O(要求用尺规作图

10、,保留作图痕迹,不要求写作法);(2)求证:DE=BF参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据图中信息以及路程、速度、时间之间的关系一一判断即可.【详解】甲的速度=70米/分,故A正确,不符合题意;设乙的速度为x米/分则有,660+24x-7024=420,解得x=60,故B正确,本选项不符合题意,7030=2100,故选项C正确,不符合题意,2460=1440米,乙距离景点1440米,故D错误,故选D【点睛】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题2、C

11、【解析】试题分析:PA、PB是O的切线,OAAP,OBBP,OAP=OBP=90,又AOB=2C=130,则P=360(90+90+130)=50故选C考点:切线的性质3、D【解析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可【详解】解:设白球个数为:x个,摸到红色球的频率稳定在25%左右,口袋中得到红色球的概率为25%, ,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个故选:D【点睛】本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键4、A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数

12、轴上,点2到原点的距离是2,所以2的绝对值是2,故选A5、B【解析】由概率公式可知摸出黑球的概率为5m,分析表格数据可知摸出黑球次数摸球实验次数的值总是在0.5左右,据此可求解m值.【详解】解:分析表格数据可知摸出黑球次数摸球实验次数的值总是在0.5左右,则由题意可得5m=0.5,解得m=10,故选择B.【点睛】本题考查了概率公式的应用.6、B【解析】解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个故选B【点睛】本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键7、C【解

13、析】根据题意画出相应的图形,由ODAB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在RtAOD中,利用锐角三角函数定义及特殊角的三角函数值求出AOD的度数,进而确定出AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数【详解】如图所示,ODAB,D为AB的中点,即AD=BD=,在RtAOD中,OA=5,AD=,sinAOD=,又AOD为锐角,AOD=60,AOB=120,ACB=AOB=60,又圆内接四边形AEBC对角互补,AEB=120,则此弦所对的圆周角为60或120故选C【点睛】此题考查了垂径定理,圆周角定理,特

14、殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键8、B【解析】分析:先由ABCD,得C=ABC=30,CD=CE,得D=CED,再根据三角形内角和定理得,C+D+CED=180,即30+2D=180,从而求出D详解:ABCD,C=ABC=30,又CD=CE,D=CED,C+D+CED=180,即30+2D=180,D=75故选B点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出C,再由CD=CE得出D=CED,由三角形内角和定理求出D9、B【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a10n,其中1|a|10,n为整数,

15、表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0).因此,88000一共5位,88000=8.88104. 故选B.考点:科学记数法.10、C【解析】由平行线的判定定理可证得,选项A,B,D能证得ACBD,只有选项C能证得ABCD注意掌握排除法在选择题中的应用【详解】A.3=A,本选项不能判断ABCD,故A错误;B.D=DCE,ACBD.本选项不能判断ABCD,故B错误;C.1=2,ABCD.本选项能判断ABCD,故C正确;D.D+ACD=18

16、0,ACBD.故本选项不能判断ABCD,故D错误.故选:C.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键.11、A【解析】先根据正五边形的性质求出EAB的度数,再由平行线的性质即可得出结论【详解】解:图中是正五边形EAB108太阳光线互相平行,ABG46,FAE180ABGEAB1804610826故选A【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出EAB.12、B【解析】根据余角的性质,可得DCA与CBE的关系,根据AAS可得ACD与CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案【详解】ADC=BEC=90.BCE+CBE=

17、90,BCE+CAD=90,DCA=CBE,在ACD和CBE中,,ACDCBE(AAS),CE=AD=3,CD=BE=1,DE=CECD=31=2,故答案选:B.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.二、填空题:(本大题共6个小题,每小题4分,共24分)13、3【解析】分析:根据算术平方根的概念求解即可.详解:因为32=9所以=3.故答案为3.点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.14、1【解析】根据等边三角形的性质可得OCAC,ABD30,根据“SAS”可证ABDACE,可得ACE30ABD,当OEEC时,

18、OE的长度最小,根据直角三角形的性质可求OE的最小值【详解】解:ABC的等边三角形,点O是AC的中点,OCAC,ABD30ABC和ADE均为等边三角形,ABAC,ADAE,BACDAE60,BADCAE,且ABAC,ADAE,ABDACE(SAS)ACE30ABD当OEEC时,OE的长度最小,OEC90,ACE30OE最小值OCAB1,故答案为1【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键15、20【解析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30 x-600当y=0时x=20所以免费行李的最大质量为20

19、kg16、1【解析】如图作点D关于BC的对称点D,连接PD,ED,由DP=PD,推出PD+PF=PD+PF,又EF=EA=2是定值,即可推出当E、F、P、D共线时,PF+PD定值最小,最小值=EDEF【详解】如图作点D关于BC的对称点D,连接PD,ED,在RtEDD中,DE=6,DD=1,ED=10,DP=PD,PD+PF=PD+PF,EF=EA=2是定值,当E、F、P、D共线时,PF+PD定值最小,最小值=102=1,PF+PD的最小值为1,故答案为1【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.17、(,)【解析】作AC

20、OB、ODAB,由点A、B坐标得出OC=3、AC=、BC=OC=3,从而知tanABC=,由旋转性质知BO=BO=6,tanABO=tanABO=,设OD=x、BD=3x,由勾股定理求得x的值,即可知BD、OD的长即可.【详解】如图,过点A作ACOB于C,过点O作ODAB于D,A(3, ),OC=3,AC=,OB=6,BC=OC=3,则tanABC=,由旋转可知,BO=BO=6,ABO=ABO,=,设OD=x,BD=3x,由OD2+BD2=OB2可得(x)2+(3x)2=62,解得:x=或x= (舍),则BD=3x=,OD=x=,OD=OB+BD=6+=,点O的坐标为(,).【点睛】本题考查的

21、是图形的旋转,熟练掌握勾股定理和三角函数是解题的关键.18、1【解析】利用对称性可设出E、F的两点坐标,表示出DEF的面积,可求出k的值【详解】解:设AFa(a2),则F(a,2),E(2,a),FDDE2a,SDEFDFDE,解得a或a(不合题意,舍去),F(,2),把点F(,2)代入解得:k1,故答案为1【点睛】本题主要考查反比例函数与正方形和三角形面积的运用,表示出E和F的坐标是关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)真;(2);(3)或或.【解析】(1)先根据直角三角形斜边的中线等于斜边的一半可知MP=MB,从而MPB=MBP,然

22、后根据三角形外角的性质说明即可;(2)先证明PACPMB,然后根据相似三角形的性质求解即可;(3)分三种情况求解:P为线段AB上的“好点”, P为线段AB延长线上的“好点”, P为线段BA延长线上的“好点”.【详解】(1)真 .理由如下:如图,当ABC=90时,M为PC中点,BM=PM,则MPB=MBPACP,所以在线段AB上不存在“好点”; (2)P为BA延长线上一个“好点”;ACP=MBP;PACPMB;即;M为PC中点,MP=2;. (3)第一种情况,P为线段AB上的“好点”,则ACP=MBA,找AP中点D,连结MD;M为CP中点;MD为CPA中位线;MD=2,MD/CA;DMP=ACP

23、=MBA;DMPDBM;DM2=DPDB即4= DP(5DP);解得DP=1,DP=4(不在AB边上,舍去;)AP=2 第二种情况(1),P为线段AB延长线上的“好点”,则ACP=MBA,找AP中点D,此时,D在线段AB上,如图,连结MD;M为CP中点;MD为CPA中位线;MD=2,MD/CA;DMP=ACP=MBA;DMPDBMDM2=DPDB即4= DP(5DA)= DP(5DP);解得DP=1(不在AB延长线上,舍去),DP=4AP=8;第二种情况(2),P为线段AB延长线上的“好点”,找AP中点D,此时,D在AB延长线上,如图,连结MD; 此时,MBAMDBDMP=ACP,则这种情况不

24、存在,舍去; 第三种情况,P为线段BA延长线上的“好点”,则ACP=MBA, PACPMB; BM垂直平分PC则BC=BP= ;综上所述,或或;【点睛】本题考查了信息迁移,三角形外角的性质,直角三角形斜边的中线等于斜边的一半,相似三角形的判定与性质及分类讨论的数学思想,理解“好点”的定义并能进行分类讨论是解答本题的关键.20、证明见解析.【解析】试题分析:先由平行四边形的性质得到B=D,AB=CD,再利用垂直的定义得到AEB=GFD=90,根据“ASA”判定AEBGFD,从而得到AB=DC,所以有DG=DC试题解析:四边形ABCD为平行四边形,B=D,AB=CD,AEBC,FGCD,AEB=G

25、FD=90,在AEB和GFD中,B=D,BE=DF,AEB=GFD,AEBGFD,AB=DC,DG=DC考点:1全等三角形的判定与性质;2平行四边形的性质21、(1);(2);(3)【解析】(1)连接OB、OC,可证OBC是等边三角形,根据垂径定理可得DOC等于30,OA=OC可得ACO=CAO=,利用三角形的内角和定理即可表示出AOD的值.(2)连接OB、OC,可证OBC是等边三角形,根据垂径定理可得DOB等于30,因为点D为BC的中点,则AOB=BOC=60,所以AOD等于90,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD、AD的长.(3)分两种情况讨论:两圆外切,两

26、圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD的长,再过O点作AE的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB、OC.BC=AOOB=OC=BCOBC是等边三角形BOC=60点D是BC的中点BOD=OA=OC=AOD=180-=150-2(2)如图2:连接OB、OC、OD.由(1)可得:OBC是等边三角形,BOD=OB=2,OD=OBcos=B为的中点,AOB=BOC=60AOD=90根据勾股定理得:AD= (3)如图3.圆O与圆D相内切时:连接OB、OC,过O点作OFAEBC是直径,D是BC的中点以BC为直径的圆的圆心为D点由(2)可得:OD=,圆D的半径为

27、1AD=设AF=x在RtAFO和RtDOF中, 即解得:AE=如图4.圆O与圆D相外切时:连接OB、OC,过O点作OFAEBC是直径,D是BC的中点以BC为直径的圆的圆心为D点由(2)可得:OD=,圆D的半径为1AD=在RtAFO和RtDOF中, 即解得:AE=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.22、-1.【解析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案【详解】原式=1+13=1【点睛】本题主要考查了实数运算,正确化简各数是解题的关键23、(1)证明见解析;(

28、2)AG=;(3)证明见解析.【解析】(1)根据正方形的性质得到ADBC,ABCD,ADCD,根据相似三角形的性质列出比例式,等量代换即可;(2)根据勾股定理求出AE,根据相似三角形的性质计算即可;(3)延长GF交AM于H,根据平行线分线段成比例定理得到,由于BMBE,得到GFFH,由GFAD,得到,等量代换得到,即,于是得到结论【详解】解:(1)四边形ABCD是正方形,ADBC,ABCD,AD=CD,GFBE,GFBC,GFAD,ABCD,AD=CD,GF=BF;(2)EB=1,BC=4,=4,AE=,=4,AG=;(3)延长GF交AM于H,GFBC,FHBC,BM=BE,GF=FH,GFAD, ,FOED=ODEF【点睛】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论