2022届海南省海南枫叶国际校中考数学考前最后一卷含解析_第1页
2022届海南省海南枫叶国际校中考数学考前最后一卷含解析_第2页
2022届海南省海南枫叶国际校中考数学考前最后一卷含解析_第3页
2022届海南省海南枫叶国际校中考数学考前最后一卷含解析_第4页
2022届海南省海南枫叶国际校中考数学考前最后一卷含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1给出下列各数式, 计算结果为负数的有()A1个B2个C3个D4个2下列运算正确的是()Axx4=x5Bx6÷x3=x2C3x2x2=3D(2x2)3=6x63在RtABC中

2、,C=90°,如果AC=2,cosA=,那么AB的长是()A3BCD4甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:次序第一次第二次第三次第四次第五次甲命中的环数(环)67868乙命中的环数(环)510767根据以上数据,下列说法正确的是( )A甲的平均成绩大于乙B甲、乙成绩的中位数不同C甲、乙成绩的众数相同D甲的成绩更稳定5-4的相反数是( )ABC4D-46如图,ABC中,ADBC,AB=AC,BAD=30°,且AD=AE,则EDC等于()A10°B12.5°C15°D20°7如图,点A、B在数轴上表示的数的绝对值相等,

3、且,那么点A表示的数是ABCD38如果关于x的方程没有实数根,那么c在2、1、0、中取值是( )A;B;C;D9下列计算正确的是()Aa2+a2=a4Ba5a2=a7C(a2)3=a5D2a2a2=210若关于x、y的方程组有实数解,则实数k的取值范围是()Ak4Bk4Ck4Dk411甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:甲步行的速度为60米/分;乙走完全程用了32分钟;乙用16分钟追上甲;乙到达终点时,甲离终点还有300米其中正

4、确的结论有()A1个B2个C3个D4个12如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()ABC9D二、填空题:(本大题共6个小题,每小题4分,共24分)13关于x的一元二次方程x22kx+k2k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12x1x2+x22的值是_14如图,在ABC中,ABACD,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:_,可以使得FDB与ADE相似.(只需写出一个) 15因式分解: 16如图,已知ABCD,若,则=_17在

5、平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax1相交于A,B两点(点B在第一象限),点C在AB的延长线上(1)已知a=1,点B的纵坐标为1如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为_(1)如图1,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3, =_18如图,在RtABC中,BAC=90°,AB=AC=4,D是BC的中点,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)为了加强学生的安全

6、意识,某校组织了学生参加安全知识竞赛,从中抽取了部分的学生成绩进行统计,绘制统计图如图(不完整)类别分数段A50.560.5B60.570.5C70.580.5D80.590.5E90.5100.5请你根据上面的信息,解答下列问题(1)若A组的频数比B组小24,求频数直方图中的a,b的值;(2)在扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数直方图;(3)若成绩在80分以上为优秀,全校共有2 000名学生,估计成绩优秀的学生有多少名?20(6分)如图,已知AB是O的弦,C是 的中点,AB=8,AC= ,求O半径的长21(6分)如图,在RtABC与RtABD中,ABC=BA

7、D=90°,AD=BC,AC,BD相交于点G,过点A作AEDB交CB的延长线于点E,过点B作BFCA交DA的延长线于点F,AE,BF相交于点H图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)证明:四边形AHBG是菱形;若使四边形AHBG是正方形,还需在RtABC的边长之间再添加一个什么条件?请你写出这个条件(不必证明)22(8分)先化简,再求值:,其中,a、b满足23(8分)定义:对于给定的二次函数y=a(xh)2+k(a0),其伴生一次函数为y=a(xh)+k,例如:二次函数y=2(x+1)23的伴生一次函数为y=2(x+1)3,即y=2x1(1)已知二次函数

8、y=(x1)24,则其伴生一次函数的表达式为_;(2)试说明二次函数y=(x1)24的顶点在其伴生一次函数的图象上;(3)如图,二次函数y=m(x1)24m(m0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为1和2,在AOB内部的二次函数y=m(x1)24m的图象上有一动点P,过点P作x轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为时n的值24(10分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放

9、置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长25(10分)如图,已知抛物线y=x2+bx+c经过ABC的三个顶点,其中点A(0,1),点B(9,10),ACx轴,点P是直线AC下方抛物线上的动点(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由26(12分)如图,在RtABC中,C90

10、6;,以BC为直径的O交AB于点D,过点D作O的切线DE交AC于点E(1)求证:AADE;(2)若AB25,DE10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S(用含字母a的式子表示)27(12分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10,待加热到100,饮水机自动停止加热,水温开始下降,水温y()和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程设某天水温和室温为20,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0x8和8xa时,y和x之间

11、的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40的开水,问他需要在什么时间段内接水参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】;上述各式中计算结果为负数的有2个.故选B.2、A【解析】根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:A、xx4=x5,原式计算正确,故本选项正确;B、x6÷x3=x3,原式计算错误,故本选项错误;C、3x2x2=2x2,原式计算错误,故本选项错误;D、(2x2)3

12、=8x,原式计算错误,故本选项错误故选A3、A【解析】根据锐角三角函数的性质,可知cosA=,然后根据AC=2,解方程可求得AB=3.故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=,然后带入数值即可求解.4、D【解析】根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可【详解】把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;甲、乙成绩的中位数相同,故选项B错误;根据表格中数据可知,甲的众数是8环,乙的众数是7环,甲、乙成绩的众数不同,故选项C错误;甲命

13、中的环数的平均数为:x甲=15×(6+7+8+6+8)=7(环),乙命中的环数的平均数为:x乙=15×(5+10+7+6+7)=7(环),甲的平均数等于乙的平均数,故选项A错误;甲的方差S甲2=15(67)2+(77)2+(87)2+(67)2+(87)2=0.8;乙的方差=15(57)2+(107)2+(77)2+(67)2+(77)2=2.8,因为2.80.8,所以甲的稳定性大,故选项D正确.故选D.【点睛】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数

14、据偏离平均数越小,即波动越小,数据越稳定同时还考查了众数的中位数的求法.5、C【解析】根据相反数的定义即可求解.【详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.6、C【解析】试题分析:根据三角形的三线合一可求得DAC及ADE的度数,根据EDC=90°-ADE即可得到答案ABC中,ADBC,AB=AC,BAD=30°,DAC=BAD=30°,AD=AE(已知),ADE=75°EDC=90°-ADE=15°故选C考点:本题主要考查了等腰三角形的性质,三角形内角和定理点评:解答本题的关键是掌握等腰

15、三角形的顶角平分线、底边上的中线、底边上的高相互重合7、B【解析】如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点【详解】解:如图,AB的中点即数轴的原点O根据数轴可以得到点A表示的数是故选:B【点睛】此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键8、A【解析】分析:由方程根的情况,根据根的判别式可求得c的取值范围,则可求得答案详解:关于x的方程x1+1x+c=0没有实数根,0,即114c0,解得:c1,c在1、1、0、3中取值是1故选A点睛:本题主要考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解

16、题的关键9、B【解析】根据整式的加减乘除乘方运算法则逐一运算即可。【详解】A. ,故A选项错误。 B. ,故B选项正确。C.,故C选项错误。 D. ,故D选项错误。故答案选B.【点睛】本题考查整式加减乘除运算法则,只需熟记法则与公式即可。10、C【解析】利用根与系数的关系可以构造一个两根分别是x,y的一元二次方程,方程有实数根,用根的判别式0来确定k的取值范围【详解】解:xyk,x+y4,根据根与系数的关系可以构造一个关于m的新方程,设x,y为方程的实数根 解不等式得 故选:C【点睛】本题考查了一元二次方程的根的判别式的应用和根与系数的关系解题的关键是了解方程组有实数根的意义11、A【解析】【

17、分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题【详解】由图可得,甲步行的速度为:240÷4=60米/分,故正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故错误,乙追上甲用的时间为:164=12(分钟),故错误,乙到达终点时,甲离终点距离是:2400(4+30)×60=360米,故错误,故选A【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.12、A【解析】解:如图,连接BE,设BE与AC交于点P,四边形ABCD是正方形,点B与D关于AC对称,PD=PB

18、,PD+PE=PB+PE=BE最小即P在AC与BE的交点上时,PD+PE最小,为BE的长度直角CBE中,BCE=90°,BC=9,CE=CD=3,BE=故选A点睛:此题考查了轴对称最短路线问题,正方形的性质,要灵活运用对称性解决此类问题找出P点位置是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】【分析】根据根与系数的关系结合x1+x2=x1x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值【详解】x22kx+k2k=0的两个实数根分别是x1、x

19、2,x1+x2=2k,x1x2=k2k,x12+x22=1,(x1+x2)2-2x1x2=1,(2k)22(k2k)=1,2k2+2k1=0,k2+k2=0,k=2或1,=(2k)21×1×(k2k)0,k0,k=1,x1x2=k2k=0,x12x1x2+x22=10=1,故答案为:1【点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式0”是解题的关键14、或【解析】因为,, ,所以 ,欲使与相似,只需要与相似即可,则可以添加的条件有:A=BDF,或者C=BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理与,无从下手,没有

20、公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.15、;【解析】根据所给多项式的系数特点,可以用十字相乘法进行因式分解【详解】x2x12=(x4)(x+3)故答案为(x4)(x+3)16、【解析】【分析】利用相似三角形的性质即可解决问题;【详解】ABCD,AOBCOD,故答案为【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键17、4 【解析】解:(1)当a=1时,抛物线L的解析式为:y=x1,当y=1时,1=x1,x=±,B在第一象限,A(,1),B(,1),AB=1,向右平移抛物线L使该抛物线过点B,AB=B

21、C=1,AC=4;(1)如图1,设抛物线L3与x轴的交点为G,其对称轴与x轴交于Q,过B作BKx轴于K,设OK=t,则AB=BC=1t,B(t,at1),根据抛物线的对称性得:OQ=1t,OG=1OQ=4t,O(0,0),G(4t,0),设抛物线L3的解析式为:y=a3(x0)(x4t),y=a3x(x4t),该抛物线过点B(t,at1),at1=a3t(t4t),t0,a=3a3,=,故答案为(1)4;(1)点睛:本题考查二次函数的图象和性质.熟练掌握二次函数的性质是解题的关键.18、2 【解析】过点E作EFBC于F,根据已知条件得到BEF是等腰直角三角形,求得BEABAE6,根据勾股定理得

22、到BFEF3,求得DFBFBD,根据勾股定理即可得到结论【详解】解:过点E作EFBC于F,BFE90°,BAC90°,ABAC4,BC45°,BC4,BEF是等腰直角三角形,BEABAE6,BFEF3,D是BC的中点,BD2,DFBFBD,DE=2故答案为2【点睛】本题考查了等腰直角三角形的性质,勾股定理,正确的作出辅助线构造等腰直角三角形是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)40(2)126°,1(3)940名【解析】(1)根据若A组的频数比B组小24,且已知两个组的百分比,据此即可求得

23、总人数,然后根据百分比的意义求得a、b的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数乘以对应的百分比即可求解【详解】(1)学生总数是24÷(20%8%)=200(人),则a=200×8%=16,b=200×20%=40;(2)n=360×=126°C组的人数是:200×25%=1;(3)样本D、E两组的百分数的和为125%20%8%=47%,2000×47%=940(名)答估计成绩优秀的学生有940名【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观

24、察、分析、研究统计图,才能作出正确的判断和解决问题20、5【解析】试题分析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设O的半径为r,在ACD中,利用勾股定理求得CD=2,在OAD中,由OA2=OD2+AD2,代入相关数量求解即可得.试题解析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设O的半径为r,在ACD中,CD2+AD2=AC2,CD=2,在OAD中,OA2=OD2+AD2,r2=(r-2)2+16,解得r=5,O的半径为5. 21、 (1)详见解析;(2)详见解析;(3)需要添加的条件是AB=BC【解析】试题分析:(1)可根据已知条件,或者图形的对称

25、性合理选择全等三角形,如ABCBAD,利用SAS可证明(2)由已知可得四边形AHBG是平行四边形,由(1)可知ABD=BAC,得到GAB为等腰三角形,AHBG的两邻边相等,从而得到平行四边形AHBG是菱形试题解析:(1)解:ABCBAD证明:AD=BC,ABC=BAD=90°,AB=BA,ABCBAD(SAS)(2)证明:AHGB,BHGA,四边形AHBG是平行四边形ABCBAD,ABD=BACGA=GB平行四边形AHBG是菱形(3)需要添加的条件是AB=BC点睛:本题考查全等三角形,四边形等几何知识,考查几何论证和思维能力,第(3)小题是开放题,答案不唯一22、【解析】先根据分式混

26、合运算顺序和运算法则化简原式,再解方程组求得a、b的值,继而代入计算可得【详解】原式=,=, =,解方程组得,所以原式=【点睛】本题主要考查分式的化简求值和解二元一次方程组,解题的关键是熟练掌握分式混合运算顺序和运算法则23、y=x5【解析】分析:(1)根据定义,直接变形得到伴生一次函数的解析式;(2)求出顶点,代入伴生函数解析式即可求解;(3)根据题意得到伴生函数解析式,根据P点的坐标,坐标表示出纵坐标,然后通过PQ与x轴的平行关系,求得Q点的坐标,由PQ的长列方程求解即可.详解:(1)二次函数y=(x1)24,其伴生一次函数的表达式为y=(x1)4=x5,故答案为y=x5;(2)二次函数y

27、=(x1)24,顶点坐标为(1,4),二次函数y=(x1)24,其伴生一次函数的表达式为y=x5,当x=1时,y=15=4,(1,4)在直线y=x5上,即:二次函数y=(x1)24的顶点在其伴生一次函数的图象上;(3)二次函数y=m(x1)24m,其伴生一次函数为y=m(x1)4m=mx5m,P点的横坐标为n,(n2),P的纵坐标为m(n1)24m,即:P(n,m(n1)24m),PQx轴,Q(n1)2+1,m(n1)24m),PQ=(n1)2+1n,线段PQ的长为,(n1)2+1n=,n=点睛:此题主要考查了新定义下的函数关系式,关键是理解新定义的特点构造伴生函数解析式.24、路灯高CD为5

28、.1米【解析】根据AMEC,CDEC,BNEC,EAMA得到MACDBN,从而得到ABNACD,利用相似三角形对应边的比相等列出比例式求解即可【详解】设CD长为x米,AMEC,CDEC,BNEC,EAMA,MACDBN,ECCDx米,ABNACD,即,解得:x5.1经检验,x5.1是原方程的解,路灯高CD为5.1米【点睛】本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形25、 (1) 抛物线的解析式为y=x2-2x+1,(2) 四边形AECP的面积的最大值是,点P(,);(3) Q(4,1)或(-3,1).【解析】(1)把点A,B的坐标代入抛物线的解析式中,求

29、b,c;(2)设P(m,m22m1),根据S四边形AECPSAECSAPC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判断出BACPCA45°,则要分两种情况讨论,根据相似三角形的对应边成比例求t.【详解】解:(1)将A(0,1),B(9,10)代入函数解析式得:×819bc10,c1,解得b2,c1,所以抛物线的解析式yx22x1;(2)ACx轴,A(0,1),x22x11,解得x16,x20(舍),即C点坐标为(6,1),点A(0,1),点B(9,1

30、0),直线AB的解析式为yx1,设P(m,m22m1),E(m,m1),PEm1(m22m1)m23m.ACPE,AC6,S四边形AECPSAECSAPCACEFACPFAC(EFPF)ACEP×6(m23m)m29m.0<m<6,当m时,四边形AECP的面积最大值是,此时P();(3)yx22x1(x3)22,P(3,2),PFyFyp3,CFxFxC3,PFCF,PCF45,同理可得EAF45,PCFEAF,在直线AC上存在满足条件的点Q,设Q(t,1)且AB,AC6,CP,以C,P,Q为顶点的三角形与ABC相似,当CPQABC时,CQ:ACCP:AB,(6t):6,

31、解得t4,所以Q(4,1);当CQPABC时,CQ:ABCP:AC,(6t)6,解得t3,所以Q(3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与ABC相似,Q点的坐标为(4,1)或(3,1).【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,平行于坐标轴的直线上两点间的距离是较大的坐标减较小的坐标;解(3)的关键是利用相似三角形的性质的出关于CQ的比例,要分类讨论,以防遗漏26、(1)见解析;(2)75a.【解析】(1)连接CD,求出ADC=90°,根据切线长定理求出DE=EC,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论