版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第第 4 章章电磁场与电磁波电磁场与电磁波1第第 4 章章电磁场与电磁波电磁场与电磁波2 本章内容本章内容 4.1 波动方程波动方程 4.2 电磁场的位函数电磁场的位函数 4.3 *电磁能量守恒定律电磁能量守恒定律 4.4 *惟一性定理惟一性定理 4.5 时谐电磁场时谐电磁场第第 4 章章电磁场与电磁波电磁场与电磁波34.1 波动方程波动方程 在无源空间中,设媒质是线性、各向同性且无损耗的均匀媒在无源空间中,设媒质是线性、各向同性且无损耗的均匀媒质,则有质,则有 无源区的波动方程无源区的波动方程 波动方程波动方程 二二阶矢量微分方程,阶矢量微分方程,揭示电磁场的波动性。揭示电磁场的波动性。 麦
2、克斯韦方程麦克斯韦方程 一阶矢量微分方程组,描述电场与磁场一阶矢量微分方程组,描述电场与磁场 间的相互作用关系。间的相互作用关系。 麦克斯韦方程组麦克斯韦方程组 波动方程。波动方程。 问题的提出问题的提出0222tHH0222tEE电磁波动方程电磁波动方程第第 4 章章电磁场与电磁波电磁场与电磁波40222tHH0222tEE22)(tHHH2)(tEH00HtHtH同理可得同理可得 推证推证 问题问题 若为有源空间,结果如何?若为有源空间,结果如何? 若为导电媒质,结果如何?若为导电媒质,结果如何?第第 4 章章电磁场与电磁波电磁场与电磁波54.2 电磁场的位函数电磁场的位函数 讨论内容讨论
3、内容 位函数的性质位函数的性质 位函数的定义位函数的定义 位函数的规范条件位函数的规范条件 位函数的微分方程位函数的微分方程第第 4 章章电磁场与电磁波电磁场与电磁波6引入位函数来描述时变电磁场,使一些问题的分析得到简化。引入位函数来描述时变电磁场,使一些问题的分析得到简化。 引入位函数的意义引入位函数的意义 位函数的定义位函数的定义0)(tA0 BABtBtAE第第 4 章章电磁场与电磁波电磁场与电磁波7 位函数的不确定性位函数的不确定性()()()AAAAAAtttt )、(A 满足下列变换关系的两组位函数满足下列变换关系的两组位函数 和和 能描述同能描述同一个电磁场问题。一个电磁场问题。
4、)、(AAAt 即即也就是说,对一给定的电磁场可用不同的位函数来描述。也就是说,对一给定的电磁场可用不同的位函数来描述。 不同位函数之间的上述变换称为规范变换。不同位函数之间的上述变换称为规范变换。A 原因原因:未规定:未规定 的散度。的散度。为任意可微函数为任意可微函数第第 4 章章电磁场与电磁波电磁场与电磁波8除了利用洛仑兹条件外,另一种常用的是库仑条件,即除了利用洛仑兹条件外,另一种常用的是库仑条件,即 在电磁理论中,通常采用洛仑兹条件,即在电磁理论中,通常采用洛仑兹条件,即 位函数的规范条件位函数的规范条件0 A0tA 造成位函数的不确定性的原因就是没有规定造成位函数的不确定性的原因就
5、是没有规定 的散度。利用的散度。利用位函数的不确定性,可通过规定位函数的不确定性,可通过规定 的散度使位函数满足的方程得的散度使位函数满足的方程得以简化。以简化。AA第第 4 章章电磁场与电磁波电磁场与电磁波9tDJH)(tAtJA)(222tAJtAAtEJBJtAA222 位函数的微分方程位函数的微分方程BHEDtAEABAAA2)(0tA第第 4 章章电磁场与电磁波电磁场与电磁波10 D)(tA222t同样同样tAEED、0tA第第 4 章章电磁场与电磁波电磁场与电磁波11222t 说明说明JtAA222 若应用库仑条件,若应用库仑条件,位函数满足什么样的方程位函数满足什么样的方程? 具
6、有什么特点具有什么特点? 问题问题 应用洛仑兹条件的特点:应用洛仑兹条件的特点: 位函数满足的方程在形式上是对称位函数满足的方程在形式上是对称 的,且比较简单,易求解;的,且比较简单,易求解; 解的物理意义非常清楚,明确地解的物理意义非常清楚,明确地 反映出电磁场具有有限的传递速度;反映出电磁场具有有限的传递速度; 矢量位只决定于矢量位只决定于J,标,标 量位只决定于量位只决定于,这对求解方程特别有利。只需解出这对求解方程特别有利。只需解出A,无需,无需 解出解出 就可得到待求的电场和磁场。就可得到待求的电场和磁场。 电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应电磁位函数只是简化时变
7、电磁场分析求解的一种辅助函数,应 用不同的规范条件,矢量位用不同的规范条件,矢量位A和标量位和标量位 的解也不相同,但最终的解也不相同,但最终 得到的电磁场矢量是相同的。得到的电磁场矢量是相同的。第第 4 章章电磁场与电磁波电磁场与电磁波12*4.3 电磁能量守恒定律电磁能量守恒定律 讨论内容讨论内容 坡印廷定理坡印廷定理 电磁能量及守恒关系电磁能量及守恒关系 坡印廷矢量坡印廷矢量第第 4 章章电磁场与电磁波电磁场与电磁波13 进入体积进入体积V的能量体积的能量体积V内增加的能量体积内增加的能量体积V内损耗的能量内损耗的能量电场能量密度电场能量密度:e12w E D磁场能量密度磁场能量密度:m
8、12w H B电磁能量密度电磁能量密度:em1122wwwE DH B 空间区域空间区域V中的电磁能量中的电磁能量:11d()d22VVWw VE DH BV 特点特点:当场随时间变化时,空间各点的电磁场能量密度也要随:当场随时间变化时,空间各点的电磁场能量密度也要随 时间改变,从而引起电磁能量流动。时间改变,从而引起电磁能量流动。 电磁能量守恒关系:电磁能量守恒关系: 电磁能量及守恒关系电磁能量及守恒关系ddWtVS第第 4 章章电磁场与电磁波电磁场与电磁波14其中其中: 单位时间内体积单位时间内体积V 中所增加中所增加 的电磁能量。的电磁能量。 单位时间内电场对体积单位时间内电场对体积V中
9、的电流所做的功;中的电流所做的功; 在导电媒质中,即为体积在导电媒质中,即为体积V内总的损耗功率。内总的损耗功率。 通过曲面通过曲面S 进入体积进入体积V 的电磁功率。的电磁功率。 表征电磁能量守恒关系的定理表征电磁能量守恒关系的定理积分形式积分形式:VVSVJEVBHDEtSHEdd)2121(ddd)(VVJEdVVBHDEtd)2121(ddSSHEd)(JEBHDEtHE)2121()( 坡坡印廷定理印廷定理微分形式微分形式:第第 4 章章电磁场与电磁波电磁场与电磁波15 定义:定义: ( W/m2 )HS 物理意义物理意义: 的方向的方向 电磁能量传输的方向电磁能量传输的方向S 的大
10、小的大小 通过垂直于能量传输方通过垂直于能量传输方 向的单位面积的电磁功率向的单位面积的电磁功率S 描述时变电磁场中电磁能量传输的一个重要物理量描述时变电磁场中电磁能量传输的一个重要物理量 坡印廷矢量(电磁能流密度矢量)坡印廷矢量(电磁能流密度矢量) H S 能能流流密密度度矢矢量量 E O第第 4 章章电磁场与电磁波电磁场与电磁波16*4. 4 惟一性定理惟一性定理 在以闭曲面在以闭曲面S为边界的有界区域为边界的有界区域V 内,内,如果给定如果给定t0 时刻的电场强度和磁场强度时刻的电场强度和磁场强度的初始值,并且在的初始值,并且在 t 0 时,给定边界面时,给定边界面S上的电场强度的切向分
11、量或磁场强度的切向分量,那么,在上的电场强度的切向分量或磁场强度的切向分量,那么,在 t 0 时,区域时,区域V 内的电磁场由麦克斯韦方程惟一地确定。内的电磁场由麦克斯韦方程惟一地确定。 惟一性定理的表述惟一性定理的表述 在分析有界区域的时变电磁场问题时,常常需要在给定的初在分析有界区域的时变电磁场问题时,常常需要在给定的初始条件和边界条件下,求解麦克斯韦方程。那么,在什么定解条始条件和边界条件下,求解麦克斯韦方程。那么,在什么定解条件下,有界区域中的麦克斯韦方程的解才是惟一的呢?这就是麦件下,有界区域中的麦克斯韦方程的解才是惟一的呢?这就是麦克斯韦方程的解的惟一问题。克斯韦方程的解的惟一问题
12、。 惟一性问题惟一性问题VS第第 4 章章电磁场与电磁波电磁场与电磁波174. 5 时谐电磁场时谐电磁场 复矢量的麦克斯韦方程复矢量的麦克斯韦方程 时谐电磁场的复数表示时谐电磁场的复数表示 *复电容率和复磁导率复电容率和复磁导率 时谐场的位函数时谐场的位函数 *亥姆霍兹方程亥姆霍兹方程 *平均能流密度矢量平均能流密度矢量第第 4 章章电磁场与电磁波电磁场与电磁波18 时谐电磁场的概念时谐电磁场的概念 如果场源以一定的角频率随时间呈时谐(正弦或余弦)变化,如果场源以一定的角频率随时间呈时谐(正弦或余弦)变化,则所产生电磁场也以同样的角频率随时间呈时谐变化。这种以一则所产生电磁场也以同样的角频率随
13、时间呈时谐变化。这种以一定角频率作时谐变化的电磁场,称为时谐电磁场或正弦电磁场。定角频率作时谐变化的电磁场,称为时谐电磁场或正弦电磁场。 研究时谐电磁场具有重要意义研究时谐电磁场具有重要意义 在工程上,应用最多的就是时谐电磁场。在工程上,应用最多的就是时谐电磁场。广播、电视和通信广播、电视和通信 的载波等都是时谐电磁场。的载波等都是时谐电磁场。 任意的时变场在一定的条件下可通过傅里叶分析方法展开为不任意的时变场在一定的条件下可通过傅里叶分析方法展开为不 同频率的时谐场的叠加。同频率的时谐场的叠加。4.5.1 时谐电磁场的复数表示时谐电磁场的复数表示第第 4 章章电磁场与电磁波电磁场与电磁波19
14、 时谐电磁场可用复数方法来表示,使得大多数时谐电磁场问时谐电磁场可用复数方法来表示,使得大多数时谐电磁场问题的分析得以简化。题的分析得以简化。 设设 是一个以角频率是一个以角频率 随时间随时间t t 作正弦变化的场量,它作正弦变化的场量,它可以是电场和磁场的任意一个分量,也可以是电荷或电流等变量,可以是电场和磁场的任意一个分量,也可以是电荷或电流等变量,它与时间的关系可以表示成它与时间的关系可以表示成( , )A r t 0( , )cos( )A r tAtrj( )j0( , )ReeRe ( )etrtA r tAA r其中其中j ( )0( )erA rA时间因子时间因子空间相位因子空
15、间相位因子 利用三角公式利用三角公式式中的式中的A0为振幅、为振幅、 为与坐标有关的相位因子。为与坐标有关的相位因子。( )r 实数表示法或实数表示法或瞬时表示法瞬时表示法复数表示法复数表示法复振幅复振幅 时谐电磁场的时谐电磁场的复数表示复数表示第第 4 章章电磁场与电磁波电磁场与电磁波20 复数式只是数学表示方式,不代表真实的场。复数式只是数学表示方式,不代表真实的场。照此法,矢量场的各分量照此法,矢量场的各分量Ei(i 表示表示x、y 或或 z)可表示成)可表示成 j( )jm( , )Re( )eReeitrtiiiE r tE rEjm( , )Re( )etE r tErj( )j(
16、 )j( )mmmm( )( )e( )e( )eyxzrrrxxyyzzEre Ere Ere Er各分量合成以后,电场强度为各分量合成以后,电场强度为 有关复数表示的进一步说明有关复数表示的进一步说明复矢量复矢量 真实场是复数式的实部,即瞬时表达式。真实场是复数式的实部,即瞬时表达式。 由于时间因子是默认的,有时它不用写出来,只用与坐标有由于时间因子是默认的,有时它不用写出来,只用与坐标有 关的部分就可表示复矢量。关的部分就可表示复矢量。第第 4 章章电磁场与电磁波电磁场与电磁波21 例例4.5.1 将下列场矢量的瞬时值形式写为复数形式将下列场矢量的瞬时值形式写为复数形式mm( , )co
17、s()sin()xxxyyyE z te Etkze Etkz(2)mm( , , )()sin()sin()cos()cos()xzaxH x z te H kkztaxe Hkzta解:解:(1)由于)由于mm( , )cos()cos()2xxxyyyE z te Etkze Etkzj(/2)j()mmReeeyxt kzt kzxxyye Ee Ej(/2)j()mmm( )eeyxkzkzxxyyEze Ee Ejjjmm(eje)eyxkzxxyye Ee E(1)所以所以第第 4 章章电磁场与电磁波电磁场与电磁波22(2)因为)因为 cos()cos()kzttkzsin()c
18、os()cos()22kztkzttkzjj 2jmmm( , )( )sin()ecos()ekzkzxzaxxHx ze H ke Haa故故 mm( , , )()sin()sin()cos()cos()xzaxH x z te H kkztaxe Hkzta所以所以 mm()sin()cos()2cos()cos()xzaxe H ktkzaxe Htkza第第 4 章章电磁场与电磁波电磁场与电磁波23 例例4.5.2 已知电场强度复矢量已知电场强度复矢量mm( )jcos()xxzEze Ek z解解jmj()2m( , )Rejcos()eRecos()etxxztxxzE z t
19、e Ek ze Ek zmcos()cos()2xxze Ek zt其中其中kz和和Exm为实常数。写出电场强度的瞬时矢量为实常数。写出电场强度的瞬时矢量mcos()sin()xxze Ek zt 第第 4 章章电磁场与电磁波电磁场与电磁波24以电场旋度方程以电场旋度方程 为例,代入相应场量的矢量,可得为例,代入相应场量的矢量,可得tBEjjmmRe(e)Re(e)ttEBt jjjmmmRe(e)Re(e)RejetttEBBt mmjEB t Re 将将 、 与与 交换次序,得交换次序,得上式对任意上式对任意 t 均成立。令均成立。令 t0 ,得,得4.5.2 复矢量的麦克斯韦方程复矢量的
20、麦克斯韦方程mmReRejEB 令令t/2 ,得,得mmRejRej(j)EB mmImIm(j)EB 即即第第 4 章章电磁场与电磁波电磁场与电磁波25mmmmmmmmjj0HJDEBBD 0tt DHJBEBDjj0HJDEBDB 从形式上讲,只要把微分算子从形式上讲,只要把微分算子 用用 代替,就可以把时谐电磁代替,就可以把时谐电磁场的场量之间的关系,转换为复矢量之间关系。因此得到复矢量场的场量之间的关系,转换为复矢量之间关系。因此得到复矢量的麦克斯韦方程的麦克斯韦方程jtjt 略去略去“.”和下标和下标m第第 4 章章电磁场与电磁波电磁场与电磁波26实际的介质都存在损耗:实际的介质都存
21、在损耗: 导电媒质导电媒质当电导率有限时,存在欧姆损耗。当电导率有限时,存在欧姆损耗。 电介质电介质受到极化时,存在电极化损耗。受到极化时,存在电极化损耗。 磁介质磁介质受到磁化时,存在磁化损耗。受到磁化时,存在磁化损耗。 损耗的大小与媒质性质、随时间变化的频率有关。一些媒质损耗的大小与媒质性质、随时间变化的频率有关。一些媒质 的损耗在低频时可以忽略,但在高频时就不能忽略。的损耗在低频时可以忽略,但在高频时就不能忽略。*4.5.3 复电容率和复磁导率复电容率和复磁导率 cjj(j)j HEEEE 导电媒质的等效介电常数导电媒质的等效介电常数其中其中 c= j/、称为导电媒质的等效介电常数。、称
22、为导电媒质的等效介电常数。 对于介电常数为对于介电常数为 、电导率为、电导率为 的导电媒质,有的导电媒质,有第第 4 章章电磁场与电磁波电磁场与电磁波27 电介质的复介电常数电介质的复介电常数 同时存在极化损耗和欧姆损耗的介质同时存在极化损耗和欧姆损耗的介质c j(+) 磁介质的复磁导率磁介质的复磁导率c j 对于存在电极化损耗的电介质,有对于存在电极化损耗的电介质,有 ,称为复介电,称为复介电常数或复电容率。其虚部为大于零的数,表示电介质的电极化损常数或复电容率。其虚部为大于零的数,表示电介质的电极化损耗。在高频情况下,实部和虚部都是频率的函数。耗。在高频情况下,实部和虚部都是频率的函数。
23、对于同时存在电极化损耗和欧姆损耗的电介质,复介电常数对于同时存在电极化损耗和欧姆损耗的电介质,复介电常数为为c j 对于磁性介质,复磁导率数为对于磁性介质,复磁导率数为 ,其虚部为大于零,其虚部为大于零的数,表示磁介质的磁化损耗。的数,表示磁介质的磁化损耗。第第 4 章章电磁场与电磁波电磁场与电磁波28 损耗角正切损耗角正切 导电媒质导电性能的相对性导电媒质导电性能的相对性tantan,电介质电介质tan,导电媒质导电媒质磁介质磁介质1 弱导电媒质和良绝缘体弱导电媒质和良绝缘体1 一般导电媒质一般导电媒质1 良导体良导体 工程上通常用损耗角正切来表示介质的损耗特性,其定义为工程上通常用损耗角正切来表示介质的损耗特性,其定义为复介电常数或复磁导率的虚部与实部之比,即有复介电常数或复磁导率的虚部与实部之比,即有 导电媒质的导电性能具有相对性,在不同频率情况下,导电导电媒质的导电性能具有相对性,在不同频率情况下,导电媒质具有不同的导电性能。媒质具有不同的导电性能。第第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年天津财经大学珠江学院单招综合素质笔试备考试题含详细答案解析
- 2026金龄健康产业投资(山东)有限公司招聘笔试备考题库及答案解析
- 2026年度济南建工集团有限公司招聘笔试备考题库及答案解析
- 2026广东广州市黄埔区铁英小学教职员招聘2人笔试备考题库及答案解析
- 2026河南省老干部大学兼职教师招聘笔试备考试题及答案解析
- 2026广西百色市西林县粮食和物资储备服务中心招聘编外聘用人员1人笔试备考试题及答案解析
- 2026山西太原市第六十三中学校教师招聘2人笔试备考题库及答案解析
- 2026福建泉州南安市美林中心幼儿园招聘2人笔试备考题库及答案解析
- 三上第三单元《在牛肚子里旅行》第二课时教学设计及反思
- 2026广东广州市越秀区六榕街道办事处招聘辅助人员2笔试备考试题及答案解析
- 2026年度黑龙江省交通运输厅所属事业单位公开招聘工作人员86人备考题库及参考答案详解(新)
- GB/T 32150-2025工业企业温室气体排放核算和报告通则
- 贵州省贵阳市南明区2025-2026学年度第一学期期末测评参考卷八年级历史试题(原卷版+解析版)
- 光伏柔性支架施工方案流程
- CNAS认证质量记录表单
- 营养性贫血教学课件
- 基于51单片机的智能停车场管理系统设计
- 成人高尿酸血症与痛风食养指南(2024年版)
- 中国兽药典三部 2020年版
- 人工智能在安全监控领域的可行性报告
- 第1课 活动A《我的学习习惯·学习习惯小调查》(教学设计)-2024-2025学年二年级上册综合实践活动浙教版
评论
0/150
提交评论