微积分基本定理(第课时)_第1页
微积分基本定理(第课时)_第2页
微积分基本定理(第课时)_第3页
微积分基本定理(第课时)_第4页
微积分基本定理(第课时)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.6 微积分基本定理(2)回顾回顾一一: : 定积分的基本性质定积分的基本性质 性质性质1. 1. dx)x(g)x(fba babadx)x(gdx)x(f性质性质2. 2. badx)x(kf badx)x(fk bccabadx)x(fdx)x(fdx)x(f 性质性质3. 3. 定理定理 (微积分基本定理)(微积分基本定理)二、牛顿莱布尼茨公式( )|( )( )( )bbaaf x dxF bxFFa或或(F(x)叫做f(x)的原函数, f(x)就是F(x)的导函数)如果如果f(xf(x) )是区间是区间a,ba,b 上的连续函数上的连续函数, ,并且并且F F(x)=f(x(x)

2、=f(x),),则则baf x dxF bF a( )( )( )( )( )( )|bbbaaaf x dxF x dxf x=蝌基本初等函数的导数公式基本初等函数的导数公式1.2.()3.4.5.ln6.7.8.nRa nn-1nn-1 xxxxxxxx a a 若f(x)=c,则f(x)=0若f(x)=c,则f(x)=0若f(x)=x ,则f(x)=nx若f(x)=x ,则f(x)=nx若f(x)=sinx,则f(x)=cosx若f(x)=sinx,则f(x)=cosx若f(x)=cosx,则f(x)=-sinx若f(x)=cosx,则f(x)=-sinx若f(x)=a ,则f(x)=a

3、若f(x)=a ,则f(x)=a若f(x)=e ,则f(x)=e若f(x)=e ,则f(x)=e1 1若f(x)=log x,则f(x)=若f(x)=log x,则f(x)=xlnaxlna1 1若f(x)=lnx,则f(x)=若f(x)=lnx,则f(x)=x x|bacx11|1nbaxn+cos|bax-sin|bax定积分公式定积分公式6)()xxbxae deex=7)()lnbxxxaa dxaaa=15)(ln)1baxxdxx=1)()bacxccdx=12)nnbnaxxxnx d-=3)(sin)coscosbaxxxdx=4)(cos)sinsinbaxdxxx= -=l

4、n|bax|xbae|lnxbaaa1 1计算计算0 0sinxdxsinxdx解解(1)(s )sinco xx 00sin(s )|cos( cos0)1 12xdxco x 思考思考:( )a的几何意义是什么0 0sinxdx?sinxdx?01( )( )|( )( )bbaaf x dxF xF bF a22( )( )bc0 00 0sinxdx = _sinxdx = _sinxdx = _sinxdx = _2:求证2 2- -sin xdx =sin xdx = :计算计算20( ),f x dx2 ,01( )5,12xxf xx其中其中解解 20dx)x(f 102xdx 215dx102x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论