




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、黄冈广州初中部九年级数学组2345 生活中,我们经常见到一些美丽的图案,下列生活中,我们经常见到一些美丽的图案,下列图案各有何特点?图案各有何特点?678基本基本图图案案图图案案的形的形成成过过程程910你能找出图你能找出图案中的全等案中的全等图形吗?图形吗?这幅图案可这幅图案可看成是怎样看成是怎样制作的呢?制作的呢?11下列这些图案是怎样设计得到的呢?下列这些图案是怎样设计得到的呢?12请同学们分组讨论请同学们分组讨论:怎样用圆规画出这个六花瓣图怎样用圆规画出这个六花瓣图? ?1314画完之后请同学们思考以下几个问题画完之后请同学们思考以下几个问题: : (1) 图中A点的位置对六花瓣的形状
2、有没有影响?对花瓣的位置有影响吗? (对形状没影响,对位置有影响)?A?A?A?A?O?O?O?O15编辑此外添加标题文本编辑此外添加标题文本?1718192021 作业作业补充补充: : 用直尺用直尺, ,圆规圆规, ,三角尺再设计一个三角尺再设计一个新颖的新颖的( (课堂上未见过的课堂上未见过的) )美丽图案美丽图案. .22 小结小结: : 1.生活中很多美丽的图案和几何图形生活中很多美丽的图案和几何图形都有密切联系,复杂美丽的图案都是由都有密切联系,复杂美丽的图案都是由简单图形按一定规律排列组合而成简单图形按一定规律排列组合而成; 即即使最简单的几何图案经过你的精心设计使最简单的几何图
3、案经过你的精心设计也会给人以赏心悦目的感觉。也会给人以赏心悦目的感觉。 2. 圆周的分法。圆周的分法。探究探究:等边三角形绕它的中心至少需要旋等边三角形绕它的中心至少需要旋 转多少度才能和自身重合转多少度才能和自身重合?正方形呢?正方形呢?正六边形呢?正六边形呢?正八边形呢?正八边形呢?正正n边形呢?边形呢?正正n n边边形:形: 旋旋转角转角为为圆圆的旋转角是任意角度的旋转角是任意角度 360n已已知线段知线段ABAB和点和点O O,请画,请画出线段出线段ABAB绕点绕点O O按逆时针按逆时针旋转旋转1001000 0后的图形后的图形. .NABOBAM 如图如图, ,画出画出ABCABC绕
4、点绕点A A按逆时针方按逆时针方向旋转向旋转90900 0后的对应三角形后的对应三角形; ;DBDABCCABC(2 2). .如果如果AD=1cm,AD=1cm,那么点那么点D D旋转过的旋转过的路径路径是多少是多少cm?cm?ABCDEF.O.O名称名称定义定义把一个图形绕着某一个点旋转把一个图形绕着某一个点旋转180 ,如果他能如果他能够与够与另一个图形另一个图形重合,那么就说这两个图形重合,那么就说这两个图形关于这点成中心对称,这个点叫做对称中心关于这点成中心对称,这个点叫做对称中心,?这两个图形中的对应点叫做对称点。这两个图形中的对应点叫做对称点。如果一个图形绕着一个点旋如果一个图形
5、绕着一个点旋转转180 后的图形能够与后的图形能够与原来原来的图形的图形重合,那么这个图形重合,那么这个图形叫做中心对称图形,这个点叫做中心对称图形,这个点就是它的对称中心就是它的对称中心性质性质两个图形完全重合;两个图形完全重合;对应点连线都经过对称中心,并且被对称对应点连线都经过对称中心,并且被对称中心平分中心平分与自己本身完全与自己本身完全重合;重合;对应点连线都经过对称中对应点连线都经过对称中心,并且被对称中心平分心,并且被对称中心平分区别区别两个图形两个图形的关系的关系对称点在两个图形上对称点在两个图形上具有某种性质的具有某种性质的一个图形一个图形对称点在一个图形上对称点在一个图形上
6、联系联系若把中心对称图形的两部分分别看作两个图形,则它们成中心对称,若把若把中心对称图形的两部分分别看作两个图形,则它们成中心对称,若把中心对称的两个图形看作一个整体,则成为中心对称图形。中心对称的两个图形看作一个整体,则成为中心对称图形。5.如图:如图:P是等边是等边 ABC内的一点,把内的一点,把 ABP按不同按不同的方向通过旋转得到的方向通过旋转得到 BQC和和 ACR,?(1)指出旋转中心、旋转方向和旋转角度?)指出旋转中心、旋转方向和旋转角度??(2)? ACR是否可以直接通过把是否可以直接通过把 BQC旋转得到?旋转得到?AQRPCB不可以7.如图,如图,P P是正三角形是正三角形
7、 ABC ABC 内的一点,且内的一点,且PAPA6 6,PBPB8 8,PCPC1010若将若将PACPAC绕点绕点A A逆时针旋逆时针旋转后,得到转后,得到PAB PAB ,则点,则点P P与点与点P P 之间的距之间的距离为离为_,APBAPB_ 61508.8.已知:如图,在已知:如图,在ABCABC中,中,BAC=120BAC=1200 0,以,以BCBC为边为边向外向外作等边作等边三角形三角形BCDBCD,把,把ABDABD绕着点绕着点D D按按顺时针方向旋转顺时针方向旋转60600 0后得到后得到ECDECD, 若若AB=3AB=3,AC=2AC=2,求求BADBAD的度的度数与数与ADAD的长的长. . ?C?B?D?A?E10.10.在等腰直角在等腰直角ABCABC中,中,C=90C=900 0, BC=2cmBC=2cm,如果以,如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年项目管理关键指标设计的考点试题及答案
- 玻璃制品安全生产与应急预案考核试卷
- 生物农药在病虫害防治中的综合评价考核试卷
- 证券从业资格证考试心理准备试题及答案
- 磷肥工艺优化与节能减排考核试卷
- 2025年【金属非金属矿山支柱】模拟考试题及答案
- 机械加工中的智能供应链管理考核试卷
- 油田投球机安装施工方案
- 复述上面已经提到的主题以下是新的个主题名称考核试卷
- 园艺师参与科研项目的必要性试题及答案
- 婚礼执事单模板
- 《红色旅游线路设计》
- DB4102-T 025-2021海绵城市建设施工与质量验收规范-(高清现行)
- 冷链产品运输记录表
- 导线的连接精品课件
- 二年级美术下册课件-第14课 虫虫虫(一)2-苏少版(共22张PPT)
- 儿童保健学课件:绪论
- 中小学校园安全稳定工作岗位责任清单
- 论提高行政效率的途径 开题报告
- 浓缩机的选择与计算
- 沪教版六年级下册单词表
评论
0/150
提交评论