leslie人口增长模型_第1页
leslie人口增长模型_第2页
leslie人口增长模型_第3页
leslie人口增长模型_第4页
leslie人口增长模型_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 人口增长预测模型摘要本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。最后提出了有关人口控制与管理的措施。模型:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1963年、1980年、2005年到2012年四组总人口数据建立模型,进行预测,把预测结果与附件1国家人口发展战略研究报告中提供的预测值进行分析比较。得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为0.9987。运用1980年到2005年总人口数据预测得到2010年、

2、2020年、2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。模型:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型): 以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应 Leslie模型;然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相应的 Leslie模型。首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到14.2609亿人,在20

3、20年达到14.9513亿人,在2023年达到峰值14.985亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。其次,对人口老龄化问题、人口抚养比进行分析。得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;65岁以上老年人口达3.51亿人,比重达25.53%;人口抚养呈现增加的趋势。再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。最后,分别对模型与模型进行残差分析、优缺点评价与推广。关键词 Logistic人口模型 L

4、eslie人口模型 人口增长预测 MATLAB软件1、问题重述一、背景知识:中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。我国人口发展经历了多个阶段,近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。全面建设小康社会时期是我国社会快速转型期,人口发展面临着前所未有的复杂局面,人口安全面临的风险依然存在二、相关数据:附件1 国家人口发展战略研究报告附件2 人口数据(中国人口统计年鉴中的部分数据)及其说明根据已有数据三、要解决的问题:1、试从中国的实际情况和人口增长的上述特点出发,参考附件2中

5、的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;特别要指出你们模型中的优点与不足之处。2、利用所建立模型的预测结果,参照附件1的相关叙述对反映中国人口增长特点的一系列指标如人口老龄化、人口抚养比等进行分析预测。3、根据模型的计算结果,对未来人口发展高峰进行预测并针对中国人口的调控和管理进行分析。2、问题分析人口的变化受到众多方面因素的影响,因此对人口的预测与控制也就十分复杂,很难在一个模型中综合考虑到各个因素的影响。为了更好的解决此问题,我们分析了题目以及附录1中所给的相关信息,考虑到可以根据对人口增长不同的评价指标及

6、不同的时期建立多个模型分别加以讨论。一、从附件1中,我们看到过去一些专家对中国的总人口数做出了2010年、2020年分别达到13.6亿人和14.5亿人,2033年前后达到峰值15亿人左右的预测。因而,我们也可以先对总人口的增长趋势做出自己的预测与专家预测数据进行比较,对于预测所要用到的一些相关数据,我们作了相应的补充,由此我们建立了模型:阻滞增长模型。二、模型只考虑了人口总数,对人口总数进行了预测分析。但实际中在对人口进行分析时,按年龄段分布的人口结构是非常重要的。在人口总数一定时,不同年龄段的人的生育率和死亡率是不同的,它们对人口未来发展的影响也是很不一样的。为了讨论不同年龄段的人口分布对人

7、口增长的影响,我们依据附件2建立了模型:按年龄分布的Leslie模型。三、由模型和模型的结果我们预测了人口总数的发展趋势,由模型的计算结果我们还能够得到各年份处在各年龄段的人口数量、男女比率的预测值。根据这些预测值我们可以计算出反映人口增长特点的其他指标,由此我们可以对模型的计算结果进行进一步的分析。3、合理的假设1、社会稳定,不会发生重大自然灾害和战争不随时间而变化2、超过90岁的妇女(老寿星)都按90岁年龄计算3、在较短的时间内,平均年龄变化较小,可以认为不变4、不考虑移民对人口总数的影响4、名词解释与符号说明一、名词解释1、总和生育率指一定时期(如某一年)各年龄组妇女生育率的合计数,说明

8、每名妇女按照某一年的各年龄组生育率度过育龄期,平均可能生育的子女数,是衡量生育水平最常用的指标之一。2、更替水平指这样一个生育水平,同一批妇女生育女儿的数量恰好能替代她们本身。一旦达到生育更替水平,出生和死亡将逐渐趋于均衡,在没有国际迁入与迁出的情况下,人口将最终停止增长,保持稳定状态。3、人口抚养比指人口总体中非劳动年龄人口数与劳动年龄人口数之比。通常用百分比表示。说明每 100 名劳动年龄人口大致要负担多少名非劳动年龄人口。用于从人口角度反映人口与经济发展的基本关系。根据劳动年龄人口的两种不同定义( 15-59 岁人口或 15-64 岁人口),计算总抚养有两种方式4、人口老龄化指人口中老年

9、人比重日益上升的现象。 促使人口老龄化的直接原因是生育率和死亡率降低,主要是生育率降低。一般认为,如果人口中65岁及以上老年人口比重超过7%,或60岁及以上老年人口比重超过10%,那么该人口就属于老年型。5、出生人口性别比是活产男婴数与活产女婴数的比值,通常用女婴数量为100时所对应的男婴数来表示。正常情况下,出生性别比是由生物学规律决定的,保持在103107之间。二、符号说明序号符号意义1:表示年份(选定初始年份的)2人口增长率3:人口数量4:自然资源和环境条件所能容纳的最大人口数量5:可决系数6:在时间段第年龄组的人口总数7:第年龄组的生育率8:第年龄组的死亡率9:第年龄组的存活率10:L

10、eslie矩阵11:2001年全国人口总数12:2001年城市总人口13:2001年镇总人口14:2001年乡总人口15:2001年第年龄段的人口总数16:时分别表示市、镇、乡的女孩出生率17:时段具有劳动能力的人口18:社会的抚养比指数19:总和生育率20:时段年龄组中女性所占的百分比5、模型的建立与求解模型:阻滞增长模型(Logistic模型)1一、模型的准备阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率的影响上,使得随着人口数量的增加而下降。若将表示为的函数。则它应是减函数。于是有

11、: (1)对的一个最简单的假定是,设为的线性函数,即 (2)设自然资源和环境条件所能容纳的最大人口数量,当时人口不再增长,即增长率,代入(2)式得,于是(2)式为(3)将(3)代入方程(1)得:(4)解方程(4)可得: (5)二、模型的建立为了对以后一定时期内的人口数做出预测,我们首先从中国经济统计数据库(211.86.245.155/index.aspx)上查到我国从1954年到2005年全国总人口的数据如表1。表1 各年份全国总人口数(单位:千万)年份195419551956195719581959196019611962总人口60.261.562.864.666.067.266.265.

12、967.3年份196319641965196619671968196919701971总人口69.170.472.574.576.378.580.783.085.2年份197219731974197519761977197819791980总人口87.189.290.992.493.795.096.25997.598.705年份198119821983198419851986198719881989总人口100.1101.654103.008104.357105.851107.5109.3111.026112.704年份199019911992199319941995199619971998总

13、人口114.333115.823117.171118.517119.850121.121122.389123.626124.761年份1999200020012002200320042005总人口125.786126.743127.627128.453129.227129.988130.7561、将1954年看成初始时刻即,则1955为,以次类推,以2005年为作为终时刻。用函数(5)对表1中的数据进行非线性拟合,运用Matlab编程(程序见附录1)得到相关的参数,可以算出可决系数(可决系数是判别曲线拟合效果的一个指标):由可决系数来看拟合的效果比较理想。所以得到中国各年份人口变化趋势的拟合曲

14、线: (6)根据曲线(6)我们可以对2010年()、2020年()、及2033年()进行预测得(单位:千万):结果分析:从附录1所给信息可知从1951年至1958年为我国第一次出生人口高峰,形成了中国人口规模“由缓到快”的增长基础;因此这段时期人口波动较大,可能影响模型结果的准确性。1959、1960、1961年为三年自然灾害时期,这段时期人口的增长受到很大影响,1962年处于这种影响的滞后期,人口的增长也受到很大影响。总的来说1951-1962年的人口增长的随机误差不是服从正态分布,由于上面的曲线拟合是用最小二乘法,所以很难保证拟合的准确性。因此我们再选择1963年作为初始年份对表1中的数据

15、进行拟合。2、 将1963年看成初始时刻即,以2005年为作为终时刻。运用Matlab编程(程序见附录2)得到相关的参数,可以算出可决系数得到中国各年份人口变化趋势的另一拟合曲线: (7)根据曲线(7)我们可以对2010年()、2020年()、及2033年()进行预测得(单位:千万):结果分析:1963年-1979年其间,人口的增长基本上是按照自然的规律增长,特别是在农村是这样,城市受到收入的影响,生育率较低,但都有规律可寻。总的来说,人口增长的外界大的干扰因素基本上没有,可以认为这一阶段随机误差服从正态分布;1980-2005年这一时间段,虽然人口的增长受到国家计划生育政策的控制,但计划生育

16、的政策是基本稳定的,这一阶段随机误差也应服从正态分布(当然均值与方差可能不同)因此用最小二乘法拟合所得到的结果应有较大的可信度。3、从1980-2005年,国家计划生育政策逐渐得到完善及贯彻落实,这个时期的人口增长受到国家计划生育政策的控制,人口的增长方式与上述的两个阶段都不同。因此我们进一步选择1980年作为初始年份2005年作为终时刻进行拟合。运用Matlab编程(程序见附录3)得到相关的参数,可以算出可决系数得到中国各年份人口变化趋势的第三条拟合曲线:(8)根据曲线(7)我们可以对2010年()、2020年()、及2033年()进行预测得(单位:千万):结果分析:这一时期,国家虽然对人口

17、大增长进行了干预,但国家的计划生育的政策是基本稳定的,在此其间没有其他大的干扰,所以人口增长的随机误差应服从正态分布。所以我们的结果应是比较可信的。我们分别根据拟合曲线(6)、(7)、(8)对各年份中国总人口进行预测得到结果如表2:表2 各年份全国总人口用不同拟合曲线预测数(单位:千万)年份全国总人口预测(单位:千万)预测曲线(6)预测曲线(7)预测曲线(8)2000126.7649126.3338126.4732003130.5141129.2303129.51682006134.1131.8447132.27582009137.516134.1926134.76382012140.7577

18、136.2917136.99712015143.8231138.1607138.99332018146.7117139.819140.7712021149.4251141.2856142.34892024151.9662142.579143.74522027154.3392143.7168144.97782030156.5494144.7157146.06322033158.6028145.5908147.01722036160.5063146.3562147.85412039162.267147.0247148.58712042163.8924147.6077149.22842045165.

19、3903148.1158149.78862048166.7683148.558150.2775由上表可以看出:用拟合曲线(6)预测得到的数据比较大,在2024年总人口就已经超过了151.9662千万,而且一直以比较快的速度增长到2048年达到了166.7683千万。用拟合曲线(7)预测得到的数据偏小,到2048年人口只有148.558千万。相比较而言用拟合曲线(8)预测的数据比较接近附件1中的预测。画出图形如图1:图1:对各年份全国总人口数的预测 模型:按年龄分布的Leslie模型2一、模型的准备将人口按年龄大小等间隔地划分成个年龄组(譬如每10岁一组),模型要讨论在不同时间人口的年龄分布,对

20、时间也加以离散化,其单位与年龄组的间隔相同。时间离散化为.设在时间段第年龄组的人口总数为,定义向量,模型要研究的是女性的人口分布随的变化规律,从而进一步研究总人口数等指标的变化规律。设第年龄组的生育率为,即是单位时间第年龄组的每个女性平均生育女儿的人数;第年龄组的死亡率为,即是单位时间第年龄组女性死亡人数与总人数之比,称为存活率。设、不随时间变化,根据、和的定义写出与应满足关系: (9)在(9)式中我们假设中已经扣除婴儿死亡率,即扣除了在时段以后出生而活不到的那些婴儿。若记矩阵 (10)则(9)式可写作 (11)当、已知时,对任意的有 (12)若(10)中的元素满足();(),且至少一个。则矩

21、阵称为Leslie矩阵。 只要我们求出Leslie矩阵并根据人口分布的初始向量,我们就可以求出时段的人口分布向量。二、模型的建立我们以2001年为初始年份对以后各年的女性总数及总人口数进行预测,根据附件2中所给数据,以一岁为间距对女性分组。(1) 计算2001年处在各个年龄上的妇女人数的分布向量:附件2给了2001年中国人口抽样调查数据,提取为表3表 3城市男147907城市女147465镇男80279镇女77976乡男394690乡女372242根据抽样调查的结果,可以算出2001年城市、镇、乡人口占2001年全国总人口的比率分别为:我们由表1数据知2001年全国总人口(单位:千万),因此可

22、以算出2001年城市、镇、乡的总人口分别为(单位:千万):、根据附件2给的2001年城市、镇、乡各个年龄段的女性比率,可以分别算出2001年城市、镇、乡处在第年龄段的女性的总数分别为。以城市为例,设2001年城市中处在年龄段妇女占城市总人口比率分别为,则(镇、乡类似)。于是可以算出2001年处在第年龄段上的妇女总人数(见附录7)。(2)计算处在第年龄段的每个女性平均生育女儿的人数。附件2中分别给出了2001年城市、镇、乡育龄妇女(15岁49岁)的生育率(此处应该是包含男孩和女孩)(或时都为0),则可以分别算出2001年处在第年龄段的城市、镇、乡育龄妇女总共生育的小孩数(包含男孩和女孩),记为:

23、。以城市为例计算:(镇、乡类似)。附件2中还分别给出了2001年市、镇、乡的男女出生人口性别比(女100计),据此可以分别计算出城市、镇、乡女孩的出生率。由此就可以求出2001年处在第年龄段的每个女性平均生育女儿的人数:,由于总和生育率:经计算得到总和生育率小于1.8,误差很大,我们对生育率进行修正:具体计算结果见附录7。(3) 计算第年龄段的女性总存活率率:记第年龄段的女性的死亡率为。附件2中分别给出了城市、镇、乡处在第年龄段的女性死亡率,则处在第年龄段的女性总死亡率为:,于是总存活率为:见附录4。用EXCEL对计算出来的数据进行整理,然后运用MATLAB软件进行编程,计算出Leslie矩阵

24、,于是可以用上面(12)式进行预测。三、对模型结果作进一步讨论我国人口发展形势复杂,目前人口的低生育水平面临着严峻的挑战,下面我们分别从如下方面分析预测我国人口发展将要面临的复杂局面。(1)人口总量与劳动力人口的发展变化根据考虑种群结构的Leslie离散模型,利用2001年的数据建立人口预测模型。通过分析,计算出我国人口的预测值,对应作出的我国劳动年龄人口与总人口的折线图如下:图2 我国全国总人口与劳动年龄人口折线图根据图2 可以知道从2001年到2023年预测我国全国总人口是呈现上升趋势的,随后几年呈现缓慢下降的趋势。总人口在2010年、2020年分别达到14.2609亿人和14.9513亿

25、人,在2023年达到峰值14.985亿人,在2033年达到14.7455亿人。把预测数值与附件2中所提供的预测数值进行比较,发现我们预测的未来人口的高峰期提前10年。这一方面可能由我国男女的出生性别比例中女性所占的比例较小的原因;另一方面,我们计算出人口更替率仅为1.42(此为5年的均值),而中外专家对我国90年代中期以来的人口更替率的计算结果为1.8(见附录10),两者相差甚远,这说明附录-提供的数据可能不够真实,从而导致了我国人口峰值的预测年份提前。根据图2,我国劳动年龄人口庞大,15-64岁的劳动年龄人口2010年为10.4421亿人,2013年将达到高峰10.4852亿人,随后劳动年龄

26、人口呈现下降的趋势。由此,可知在相当长的时间内,我国不缺劳动力,但需要加强劳动力结构性的调整,同时由于我国计划生育等宏观政策的影响,近几年总和生育率已降低到1.8,并将稳定在1.8的水平上,所以经过较长的时期,我国的劳动年龄人口将有所降低。(2)人口老龄化与人口抚养比通过计算分析人口结构持续老龄化,运用Leslie离散模型,通过MATLAB软件计算出我国60岁以上与65岁以上的老龄人口数,做出散点图如下:图3 我国老年人口预测值的折线图从图3可以直观的看出我国老龄人口在持续增加,说明我国老龄化进程在加速。同时做出未来我国老龄人口占总人口的比例的折线图如下:图4 我国老龄人口占总人口预测比例的折

27、线图从图3,图4得到:2001年我国60岁以上老年人口已达到1.5538亿人,占总人口的11.5693%。到2020年,60岁以上老年人口将达到2.907亿人比重为19.443%;65岁以上老年人口将达到2.0628亿人比重从2000年的8.009%增长到13.797%。预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;65岁以上老年人口达3.51亿人,比重达25.53%。综上可知我国老龄人口数量大,老龄化速度快,高龄趋势明显,加上我国人口基数大,所以我国是个老龄人口多的国家。老龄化也在一定程度上导致了我国人口抚养比的不断增高。下面计算人口抚

28、养比指数:设与分别为男性与女性中具有劳动能力的年龄组,则时段具有劳动能力的人口为,而为时段由社会抚养的失去劳动能力与老人或尚未具有劳动能力的为成年人的数量。定义社会的抚养比指数,即平均每一劳动者抚养的无劳动能力的人数。我们以014岁为没有劳动能力的儿童,以15-64岁为具有劳动能力的年龄劳动人口,以65岁及以上的为老龄人口。首先,通过MATLAB编程计算出2002到2051年0-14岁、15-64岁、65岁及5以上三段的人数;其次,根据人口抚养比的含义,计算出每一年份的人口抚养比得出人口抚养比。得出的每年人口抚养比的折线图如下:图5 预测人口抚养比从图5 可以看出预测的以后各年的人口抚养比呈增

29、长的趋势。人口抚养比比较高主要原因有:每年新生婴儿数目在增加;老龄化的加剧,老龄人口数量大;15-64岁年龄段中的人的残疾、生病而无劳动能力等。(3)人口调控与管理现阶段我国生育水平的不稳定性,根据建立的Leslie模型,运用MATLAB软件计算出2000年到2050年我国育龄妇女(15-49岁)人口,并做出的散点图如下:图6 未来我国育龄妇女(15-49岁)人口预测从图6中可以看出我国育龄妇女(15-49岁)人口在2010年左右到达到高峰,图7 未来我国生育旺盛期育龄妇女(20-29)人数预测从图7我们发现,我国生育旺盛期育龄妇女(20-29)人数在2012年将达到高峰,到2025年左右有进

30、入一个小低谷,然后再2037年左右有达到一个小高峰。第二个我国生育旺盛期育龄妇女(20-29)人数小高峰的原因在于在2012年人口出生高峰期的女婴到2037年时达到生育旺盛期,因此,在2025年生育旺盛期育龄妇女(20-29)人数达到低谷时有回升的形势。6、误差分析与灵敏度分析一、模型的残差分析:1、运用Matlab软件计算出用1954年到2005年的总人口数进行拟合产生的残差,再利用EXCEL作出残差的散点图如下:图8 残差分析从图8可以看出残差在坐标轴上下波动,但是,不是呈现正态分布,并且残差绝对值之和为57.9992,是比较大,因此拟合的效果不太好。2、利用1963年到2005年的总人口

31、数,根据Logistic模型的形式,用Matlab软件进行拟合,并求出残差序列,再利用EXCEL进行处理,并作出残差散点图如下:图9 残差分析图通过图9,可以看出残差值大致分布在坐标轴的上下,呈现对称分布,又有Matlab软件计算出拟合的残差绝对值之和为27.8046,因此效果较好。3、利用1980年到2005年的人口总数居,同样运用Matlab、EXCEL软件进行分析、处理,作出散点图如下:图10 残差分析图通过Matlab软件计算,得出拟合的残差绝对值之和为10.1699,从图10可以看出,图形基本关于坐标轴对称,所以你和效果比较好。二、灵敏度分析:1、在不同的总合生育率下按照前面的方法分

32、别计算从2001年到2050年全国人口总数的预测值(程序见附录6),并画出图形如图11图11:在不同的k值下对各年份全国总人口数的预测 由图11可以看出当值很小时人口增长比较缓慢,达到峰值后人口数量很快下降出现严重负增长;当值很大时人口增长速度很快,达到峰值后下降的速度缓慢,在此情况下人口数量急剧膨胀。只有当值适中时,总人口增长才比较稳定。2、再在不同的总和生育率下按照前面的方法分别计算从2001年到2050年全国老龄化变化趋势(程序见附录6),并画出图形如图12图12:在不同的k值下对各年份老龄化变化趋势 由图12可以看出值越小,老龄化增大的速度越快;值越大老龄化指数增长平缓年龄结构稳定,有

33、利于社会发展。由以上分析可知国家在制定人口政策时要多方面考虑,如果只看重对人口总数的控制可能导致社会老龄化严重、劳动力不足这显然是不利于社会经济发展的;相反如果为了防止社会老龄化加快而放任人口的增长,也会导致社会人口过多对资源和环境带来巨大压力。因此只有掌握好一个“平衡点”正确制定政策才能使国民经济持续增长,人民生活水平不断提高。7、模型的评价与推广一、模型的优点:1、在用模型对各年全国人口总数预测时结合实际情况,分别用不同时间段的数据拟合确定了三个预测函数。并对三个函数预测的数据进行了对比分析,使模型的计算结果更加准确。2、利用EXCEL软件对数据进行处理并作出各种平面图,简便,直观、快捷;

34、 3、运用多种数学软件进行计算,取长补短,使计算结果更加准确;4、在模型中我们充分考虑到不同年龄的个体具有不同的生育能力和死亡率,采用leslie模型,建立年龄结构的离散模型,并通过合理假设,在时间跨度不大的前提下,对人口数量仅此进行了预测,得到人口数量变化趋势图2与课题中未来我国总人口,劳动人口及人口扶养比预测 及未来我国人口老龄化预测趋势图基本一致。因为原始数据得到的人口总和生育率跟实际情况不符,我们对此进行了合理修正,使预测更为准确。在模型中我们还进行了参差分析,在模型中我们对不同的平均妇女生育胎数下人口总数及老龄化趋势进行了分析,得到适合平均生育胎数的最佳值。二、模型的缺点:在模型假设

35、中我们及不随时段的变迁而改变这一理想状态下,但出生率及死亡率会随时间的变化而有所该变,本模型没有建立与死亡率随时间变化的动态模型,因而存在一定的误差;三、模型的改进:随着人民的生活水平的提高和医疗卫生的改善,各年龄的死亡率不断下降,存活率不断提高。因此我们可以对Leslie模型进行进一步改变:记时段年龄组中女性所占的百分比为,并设为育龄女性的年龄组,则时段新生儿为我们引入控制变量,使得=1,这里,称为女性生育模式,我们将lestie矩阵变成:其中在一定时期内(这里j从0到90),为平均生育胎数,和可视为与无关的常数,我们可以通过控制结婚年龄和生育两胎间的年龄差来求的最佳值,从而达到控制人口数量

36、和年龄结构的目的。四、模型的推广:本文首先不考虑年龄结构对人口增长的影响,建立Logistic人口预测模型;然后,逐步改进,考虑年龄结构对人口增长的影响,建立Leslie模型,对人口增长进行预测,这种由简到繁,逐步加深的思路,可以应用到较复杂问题的处理上。参考文献1 姜启源,谢金星,叶俊.数学模型M.:.2003年8月第三版;2 姜启源.数学模型M.: 高等教育.1987年4月第一版;3 于洪彦.Excel统计分析与决策M.:高等教育.2006年4月;4 胡守信,李柏年.基于MATLAB的数学实验M.:科学.2004年6月;5 扬启帆,康旭升,等.数学建模M.: 高等教育.2006年5月;6于

37、学军.中国人口科学2000年第2期,时间:2000-4-6,中国人口信息网.附录附录1:t=0:51; %令1954年为初始年x=60.2 61.5 62.8 64.6 66 67.2 66.2 65.9 67.3 69.1 70.4 72.5 74.5 76.3 78.5 80.7 83 85.2 87.1 89.2 90.9 92.4 93.7 95 96.259 97.5 98.705 100.1 101.654 103.008 104.357 105.851 107.5 109.3 111.026 112.704 114.333 115.823 117.171 118.517 119.

38、85 121.121 122.389 123.626 124.761 125.786 126.743 127.627 128.453 129.227 129.988 130.756; c,d=solve(c/(1+(c/60.2-1)*exp(-5*d)=67.2,c/(1+(c/60.2-1)*exp(-20*d)=90.9,c,d) ;%求初始参数b0= 241.9598, 0.02985; %初始参数值fun=inline(b(1)./(1+(b(1)/60.2-1).*exp(-b(2).*t),b,t);b1,r1,j1=nlinfit(t,x,fun,b0)y= 180.9871.

39、/(1+( 180.9871/60.2-1).*exp( -0.0336.*t); %非线性拟合的方程plot(t,x,*,t,y,-or) %对原始数据与曲线拟合后的值作图R1=r1.2;R2=(x-mean(x).2; R=1-R1/R2 %可决系数W=sum(abs(r1) %残差绝对值之和附录2:t=46:3:94y= 180.9871./(1+( 180.9871/60.2-1).*exp( -0.0336.*t)%对总人口进行预测t=0:42; %令1963年为初始年x=69.1 70.4 72.5 74.5 76.3 78.5 80.7 83 85.2 87.1 89.2 90.

40、9 92.4 93.7 95 96.259 97.5 98.705 100.1 101.654 103.008 104.357 105.851 107.5 109.3 111.026 112.704 114.333 115.823 117.171 118.517 119.85 121.121 122.389 123.626 124.761 125.786 126.743 127.627 128.453 129.227 129.988 130.756; c,d=solve(c/(1+(c/69.1-1)*exp(-5*d)=78.5,c/(1+(c/69.1-1)*exp(-20*d)=103.

41、008,c,d); %求初始参数b0= 134.368,0.056610; %初始参数值fun=inline(b(1)./(1+(b(1)/69.1-1).*exp(-b(2).*t),b,t);b1,r1,j1=nlinfit(t,x,fun,b0)y=151.4513./(1+(151.4513/69.1-1).*exp( -0.0484.*t); %非线性拟合的方程plot(t,x,*,t,y,-or) %对原始数据与曲线拟合后的值作图R1=r1.2;R2=(x-mean(x).2; R=1-R1/R2 %可决系数W=sum(abs(r1) %残差绝对值之和附录3:t=37:3:85y=

42、151.4513./(1+(151.4513/69.1-1).*exp( -0.0484.*t)%对总人口进行预测t=0:25; %令1980年为初始年x=98.705 100.1 101.654 103.008 104.357 105.851 107.5 109.3 111.026 112.704 114.333 115.823 117.171 118.517 119.85 121.121 122.389 123.626 124.761 125.786 126.743 127.627 128.453 129.227 129.988 130.756; c,d=solve(c/(1+(c/98.

43、705-1)*exp(-5*d)=105.851,c/(1+(c/98.705-1)*exp(-8*d)=111.026,c,d); %求初始参数b0= 109.8216, - 0.19157; %初始参数值fun=inline(b(1)./(1+(b(1)/98.705-1).*exp(-b(2).*t),b,t);b1,r1,j1=nlinfit(t,x,fun,b0)y= 153.5351./(1+(153.5351/98.705-1).*exp( -0.0477.*t); %非线性拟合的方程plot(t,x,*,t,y,-or) %对原始数据与曲线拟合后的值作图R1=r1.2;R2=(

44、x-mean(x).2; R=1-R1/R2 %可决系数 W=sum(abs(r1) %残差绝对值之和t=20:3:53y= 153.5351./(1+(153.5351/98.705-1).*exp( -0.0477.*t)%对总人口进行预测附录4:计算0-14岁,15-64岁,65岁及以上的程序、绘画出未来我国育龄人数的程序N=0.680891272 0.58459172 0.584558207 0.692220217 0.72411021 0.775536041 0.847368918 0.834418703 0.917922042 0.951466819 1.070015717 1.2

45、49256063 1.199263988 1.202198525 1.274218917 1.111050839 0.992314425 0.893797544 0.874657347 0.984356877 0.859576778 0.85215346 0.90864418 0.897944807 0.880539323 1.019086724 1.04218667 1.114823731 1.192867199 1.203566572 1.272973995 1.328513576 1.254992403 1.333819445 1.103186123 1.22470307 1.22064

46、3442 1.236736319 1.390726415 0.980765111 0.646684069 0.785660623 0.701627592 0.910420112 0.960157646 0.914258713 0.953980568 0.927429956 0.851007759 0.825482359 0.807942823 0.736552002 0.69043204 0.60580295 0.615510624 0.554785663 0.50370135 0.480051762 0.468722817 0.455364059 0.484386541 0.44734468

47、1 0.420164498 0.44238033 0.426529091 0.428183875 0.39132953 0.380409129 0.385339967 0.327924574 0.334697711 0.307330012 0.262864834 0.270663183 0.235872165 0.208725495 0.212001549 0.178456772 0.164260316 0.149842833 0.138734916 0.109899949 0.097358277 0.0765762 0.0638135 0.055794123 0.049396016 0.03

48、82881 0.033544777 0.023870616 0.070211606;N0=N; %第0年(2001年)的女性个年龄段的人口数A=eye(90);b=0.974906966 0.999321231 0.99772433 0.999247616 0.999567418 0.999180663 0.999887948 0.999387596 0.999618586 0.999985672 0.999389434 0.999724354 0.999801796 0.999627626 0.999704795 0.999639686 0.999728462 0.999974533 0.9

49、99173327 0.998954118 0.999441067 0.999357392 0.999290675 0.998999176 0.999881604 0.998896347 0.998355939 0.999135339 0.999074527 0.998872652 0.999180794 0.998918159 0.999046112 0.999042354 0.999396027 0.998624972 0.998252716 0.999597855 0.998710945 0.999003274 0.999443444 0.999141415 0.998772101 0.9

50、98940505 0.997905005 0.998374562 0.997783774 0.997596666 0.997344906 0.996954499 0.996669784 0.996030759 0.995006639 0.996157488 0.994647744 0.995779435 0.995652313 0.99577713 0.992477806 0.994969564 0.988130537 0.989284868 0.988703961 0.988302563 0.98420824 0.984495416 0.985298735 0.980062089 0.978

51、928307 0.977358446 0.971126989 0.969303899 0.969979818 0.96405059 0.961740312 0.96729706 0.948302346 0.946571559 0.949641387 0.935949391 0.912489482 0.9261805 0.923757863 0.928757906 0.918230333 0.887761389 0.885306858 0.875178086 0.882495752 0.824428701;for i=1:90 A(i,:)=A(i,:)*b(1,i);endA; c=0 0 0

52、 0 0 0 0 0 0 0 0 0 0 0 0 4.478E-05 0.000322169 0.000358246 0.001004604 0.004683367 0.011011165 0.033616492 0.057875394 0.074871727 0.069182006 0.076039141 0.06724895 0.052429406 0.043732464 0.034350502 0.024632733 0.023252532 0.018343847 0.014701275 0.011039961 0.007117557 0.005094843 0.00359291 0.0

53、02514858 0.002484781 0.001764709 0.001471644 0.000676953 0.000265476 0.000401474 0.000408779 0.000110447 0.000192401 0.000389421 0.000224069 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;c1=1.295274487*c;M=sum(c1); %总合生育率d=zeros(91,1);B=c1;A;L=B,d; %构造的lestie矩阵for i=0:49 H=Li*N0; %第i年人口总数 Q(1,i+1)=sum(H(16:50,:); %第i年15-49育龄妇女总数 P(1,i+1)=sum(H(21:30,:); %第i年20-29生育旺盛期妇女总数endx=2001:2050;y1=Q*10;y2=P*10;plot(x,y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论