Abaqus优化设计和敏感性分析高级教程_第1页
Abaqus优化设计和敏感性分析高级教程_第2页
Abaqus优化设计和敏感性分析高级教程_第3页
Abaqus优化设计和敏感性分析高级教程_第4页
Abaqus优化设计和敏感性分析高级教程_第5页
免费预览已结束,剩余49页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第12章优化设计和敏感性分析本章主要讲解应用Abaqus进行结构优化设计和敏感性分析。目前的产品结构设计,大多靠经验,规划几种设计方案,结合CAE分析择优选取,但规划的设计方案并不一定是最优方案,故本章前半部分讲解优化设计中的拓扑优化和形状优化,并制定操作SOP,辅以工程实例详解。工程实际中,加工制造、装配误差等造成的设计参数变异,会对设计目标造成影响,因此寻找出参数的影响大小即敏感性,变得尤为重要,故本章后半部分着重讲解敏感性分析,并制定操作SOP,辅以工程实例求出设计参数敏感度,详解产品的深层次研究。知识要点:结构优化设计基础拓扑、形状优化理论拓扑、形状优化SOP及实例敏感性分析理论敏感性

2、分析SOP及实例12.1 优化设计基础优化设计以数学中的最优化理论为基础,以计算机为手段,根据设计所追求的性能目标,建立目标函数,在满足给定的各种约束条件下,优化设计使结构更轻、更强、更耐用。在Abaqus6.11之前,需要借用第三方软件(比如Isight、TOSCA)实现优化设计及敏感性分析,远不如Hyperworks及Ansys等模块化集成程度高。从Abaqus6.11新增Optimizationmodule后,借助于其强大的非线性分析能力,结构优化设计变得更具可行性和准确性。12.1.1 结构优化概述结构优化是一种对有限元模型进行多次修改的迭代求解过程,此迭代基于一系列约束条件向设定目标

3、逼近,Abaqus优化程序就是基于约束条件,通过更新设计变量修改有限元模型,应用Abaqus进行结构分析,读取特定求解结果并判定优化方向。Abaqus提供了两种基于不同优化方法的用于自动修改有限元模型的优化程序:拓扑优化(Topologyoptimization)和形状优化(Shapeoptimization)o两种方法均遵从一系列优化目标和约束。12.1.2 拓扑优化拓扑优化是在优化迭代循环中,以最初模型为基础,在满足优化约束(比如最小体积或最大位移)的前提下,不断修改指定优化区域单元的材料属性(单元密度和刚度),有效地从分析模型中移走单元从而获得最优设计。其主体思想是把寻求结构最优的拓扑问

4、题转化为对给定设计区域寻求最优材料的分布问题。下图12-1为Abaqus帮助文件提供的应用实例,展示了汽车控制臂在17次迭代循环中设计区域单元被逐渐移除的优化过程,其中优化的目标函数是最小化控制臂的最大应变能、最大化控制臂的刚度,约束为降低57%产品体积。优化过程中,控制臂中部的部分单元不断被移除。初始模型5次谑J于后饨火情环后K幽体积85%体科7了%体积让次f度坏后疗犬循环后E%国梗5T雌粗图12-1拓扑优化进程示例Abaqus拓扑优化提供了两种算法:通用算法(GeneralAlgorithm)和基于条件的算法(Condition-basedAlgorithm)。通用拓扑优化算法是通过调整设

5、计变量的密度和刚度以满足目标函数和约束,其较为灵活,可以应用到大多数问题中。相反,基于条件的算法则使用节点应变能和应力作为输入数据,不需要计算设计变量的局部刚度,其更为有效,但能力有限。两种算法达到优化目标的途径不同,Abaqus默认采用的是通用算法。从以下几个方面比较两种算法:01之间)。相反,0)或实体(相对中间单元:通用算法对最终设计会生成中间单元(相对密度介于基于条件的算法对最终设计生成的中间单元只有空集(相对密度接近于密度为1)。优化循环次数:对于通用优化算法,在优化开始前并不知晓所需的优化循环次数,正常情况在3045次。基于条件的优化算法能够更快的搜索到优化解,默认循环次数为15次

6、。分析类型:通用优化算法支持线性、非线性静力和线性特征频率分析。两种算法均支持几何非线性、接触和大部分非线性材料。目标函数和约束:通用优化算法可以使用一个目标函数和数个约束,这些约束可以全部是不等式限制条件,多种设计响应可以被定义为目标和约束,而基于条件的优化算法仅支持应变能作为目标函数,材料体积作为等式限制条件。12.1.3 形状优化形状优化主要用于产品外形仅需微调的情况,即进一步细化拓扑优化模型,采用的算法与基于条件的拓扑算法类似,也是在迭代循环中对指定零件表面的节点进行移动,重置既定区域的表面节点位置,直到此区域的应力为常数(应力均匀),达到减小局部应力的目的。比如图12-2所示的连杆,

7、其进行形状优化,表面节点移动,应力集中降低。图12-2形状优化示例形状优化可以用应力和接触应力、选定的自然频率、弹性应变、塑形应变、总应变和应变能密度作为优化目标,仅能用体积作为约束,但可以设置几何限制,以满足零件制造可行性(冲压、铸造等)。当然也可以冻结某特定区域、控制单元尺寸、设定对称和耦合限制。注意:1 .在进行形状优化之前,优化区域必须具有较好的网格质量,优化过程中,为了获得较高质量的网格,Abaqus优化模块可以对选定网格进行光顺,使得内外部节点位置合适。2 .光顺算法是基于单元的,比较耗费计算时间,可以只对优化区域内的单元指定网格光顺化,同时,光顺区域节点必须是自由的,不能对其施加

8、约束或冻结。12.1.4优化术语拓扑和形状优化必须在设定好的目标和约束条件下进行,如此程序才会在约束框架内向优化目标迈进。仅仅描述要减小应力或者增大特征值是不够,必须有更为特定的定义,比如,最小化两种载荷下的最大节点应力,最大化前5阶特征值之和,如此的优化目标称之为目标函数(ObjectiveFunction);同时,在优化过程中可以强制限定某些特定值,比如可以指定某节点的位移不超过一定值,如此的强制性限制叫做约束(Constraint)o目标函数和约束都是结构优化的特定术语,Abaqus/CAE中用到的术语有:设计区域(Designarea):即结构优化的模型修改区域,可以是整个模型,也可以

9、是模型的一部分或几个部分。在给定的边界条件、载荷和制造约束条件下,拓扑优化通过增加或删除设计区域内单元的材料达到最优化设计,而形状优化则通过移动表面节点以修改设计区域表面达到优化目的。设计变量(Designvariables):设计变量即优化设计中需要改变的参数。对于拓扑优化,设计区域中单元密度即是设计变量,Abaqus拓扑优化模块(ATOM)在其优化迭代中改变单元密度并将其耦合到刚度矩阵之中,实质是赋予单元极小的质量和刚度从而使其几乎不再参与结构的全局响应。对于形状优化而言,设计区域的表面节点位移即是设计变量,优化时,Abaqus将节点向外或向内移动,抑或不动,限制条件决定表面节点移动的大小

10、和方向。设计循环(Designcycle):优化是一个不断更新设计变量的迭代过程,在每次迭代中Abaqus会对更新了变量的模型进行求解、查看结果以及判定是否达到优化目的,一次迭代过程即一个设计循环。优化任务(Optimizationtask):一个优化任务即包含有设计响应、目标、约束条件和几何限制等在内的优化定义。设计响应(Designresponses:导入优化程序用于优化分析的输入值称之为设计响应。设计响应可以从Abaqus的结果输出文件.odb中直接读取,比如刚度、应力、特征频率及位移等,或者对结果文件计算得到,比如重量、质心或相对位移等。设计响应是与模型区域紧密相关的标量值,例如一个模

11、型区域内的最大应力或体积,同时,设计响应也与特定分析步、载荷工况有关。目标函数(Objectivefunctions):即定义的优化目标。目标函数是从设计响应中萃取的标量值,如最大位移或最大应力。一个目标函数可以由几个设计响应组成函数公式表达。如果设定目标函数是最小化或最大化设计响应,Abaqus优化模块则加入每个设计响应值到目标函数进行计算。此外,如果定义了多目标函数,可以使用权重因子定义其对优化的影响程度。约束(Constraints):约束也是从设计变量中萃取的标量值,但其不能从设计响应组合得到。约束是用于限定设计响应值,比如体积减少50%;同时约束也可以是到独立于优化之外的制造和几何限

12、制,比如约束优化后的结构能够用于铸造或冲压成形。停止条件(Stopconditions.):当满足某一停止条件时,优化迭代即终止。全局停止条件是最大优化迭代(设计循环)次数;局部停止条件是优化结果达到某一最大/最小定义值。12.2优化设计SOP12.2.1 优化设计SOP12-3的先试算Abaqus初始结构模型,以确认边界条件、结果是否合适,然后结合图Abaqus/CAE优化模块,设置优化设计: 创建优化任务。 创建设计响应。 应用设计响应创建目标函数。 应用设计响应创建约束(可选)。 创建几何限制(可选)。 创建停止条件。以上设置完成,进入Job模块创建优化进程,并提交分析。Module;:

13、OFtimizaTicn一百以优化连务一曾应设计明巳4曹里m际圣宗:雷理n何限制香地券士条件色嚏及叱住齐一公总创建设计响应J富仓J建一芝数一-寥臣“建约克三创建兀向国副二JE包建叁止条件片烹图12-3Abaqus/CAE优化模块提交分析后,优化程序基于定义的优化任务及优化进程,开始优化迭代: 准备设计变量(单元密度或者表面节点位置), 更新有限元模型。 执行Abaqus/Standard分析。在优化迭代(设计循环)满足以下条件即终止: 达到设定的最大迭代数 达到设定的停止条件。以上操作步骤可概括为图12-4所示的优化设计SOP(StandardOperatingProcedure)o建立有限元

14、模型图12-4优化设计SOP在图12-4SOP基础上,还需对关键步(设计响应、目标函数和约束)的设置详加说明。12.2.2 设计响应设置设计响应是从特定的结构分析结果中读取的唯一标量值,随后能够被目标函数和约束引用。要实现设计变量唯一标量值,必须在优化模块中特别运算,比如对体积的运算只能是“总和”,对区域应力的运算只能是“最大值”,由此可知Abaqus优化模块提供了以下两种设计响应操作:最大值或最小值:寻找出选定区域内的节点响应值的最大/最小值,但对应力、接触应力和应变只能是“最大值”。总和:对选定区域内节点的响应值作“总和”。Abaqus优化模块仅允许对体积、质量、惯性矩和重力作“总和”运算

15、。此外,可以定义基于另一个设计响应的响应,也可以定义由几个响应经数学运算而成的组合响应。比如,已分别对两个节点定义了两个位移响应,可再定义两个位移响应的差值作组合响应。下面详细介绍在不同优化情况下,可用或推荐使用的设计响应。1、基于条件拓扑优化的设计响应针对基于条件的拓扑优化算法,只能使用应变能和体积作为设计响应。1)应变能(Strainenergy):即每个单元应变能的总和,可以定义为结构柔度,其是结构整体柔韧性或刚度的一种度量。众所周知,柔度是刚度的倒数,最小化柔度意味着最大化全局刚度。针对线性模型的结构柔度,可以用式(12-1)计算。Strainenergy=£utku(12-

16、1)其中,u是位移矢量;k是全局刚度矩。如果加载条件是集中力或压力,是通过最小化应变能优化出最大的全局刚度;恰恰相反,如果加载的是热场,则通过最大化应变能优化出最大的全局刚度,因为优化修改模型会使结构变软导致应变能下降。此外,如果模型中有特定位移加载,应选择使用最大化应变能。注意:因为拓扑优化是对全部单元考虑总应变能,所以,应变能只能作目标函数,而不能作约束。Abaqus/CAE操彳乍:切换到优化模块,TaskCondition-basedtopologytask,DesignResponseCreate:Single-term,Variable:Strainenergy。2)体积(Volum

17、e):即设计区域的单元体积之和,可以用式(12-2)计算。Volume=£Ve(12-2)其中,Ve是单元体积。注意:针对绝大多数优化问题,必须定义体积约束。""在对最小化应变能""(最大化刚度)的优化中,如果没有定义体积约束,Abaqus优化模块仅会用材料填充整个设计区域。Abaqus/CAE操彳乍:切换到优化模块,TaskCondition-basedtopologytask,DesignResponseCreate:Single-term,Variable:Volume。2、通用拓扑优化的设计响应针对通用拓扑优化算法,可以使用重心、位移和

18、旋转、特征频率、惯性矩、内力和内转矩、反作用力和反作用转矩、应变能、体积和重量作为设计响应。1)重心(Centerofgravity):三个方向的重心可以用式(12-3)计算。:xdVxg=:dV:zdVZg(12-3):dV其中,单元密度p使用的是优化并修改的模型现有相对密度;坐标轴可以是全局坐标系统,也可以用户自定义的局部坐标系统。注意:优化模块重心计算时,仅统计模块支持的单元类型,如果模型中含有其不支持的单元类型(比如线单元),结果会和Abaqus/Standard或Abaqus/Explicit计算结果有所差Abaqus/CAE操作:切换到优化模块,TaskGeneraltopolog

19、ytask,DesignResponseCreate:Single-term,Variable:Centerofgravity。2)位移和旋转(DisplacementandRotation):大部分优化问题,都可使用位移和/或旋转响应定义目标函数或约束。节点位移和旋转变量含义可从表12-1中查知。表12-1位移和旋转变量位移旋转i-方向上ui绝对值2222Wi+uj+uk"Y+ej+e;i-方向绝对值<ui2幅仅响应顶点或较小区域的位移或旋转,能够提升优化速度,此外,如果响应的顶点或区域是在冻结区域内,优化速度会提升更多。Abaqus/CAE操作:切换到优化模块,TaskGe

20、neraltopologytask,DesignResponseCreate:Single-term,Variable:Displacement。3)模态特征频率(Modal曰genfrequency):模态特征频率值是结构分析中最简单的动态响应。Abaqus优化模块支持两种评估特征频率方法:从模态分析中获得单一特征频率Kreisselmaier-Steinhauser公式计算两种方法中Kreisselmaier-Steinhauser方法更加有效率,而单一特征频率方法有其唯一的优势一一应用各阶特征频率之和作约束。在最大化最低特征频率时,不仅仅要考虑第一阶的特征频率,还要考虑接下来的几阶,因为

21、在优化中,随着结构的变化,模态振型可能会发生转换。Abaqus/CAE操作:切换到优化模块,TaskGeneraltopologytask,DesignResponseCreate:Single-term,Variable:EigenfrequencyfrommodalanalysisorEigenfrequencycalculatedwithKreisselmaier-Steinhauserformula。4)惯性矩(Momentofinertia):在三个方向或平面上的惯性矩可以用式12-4计算。Ix=。y2z2dV;Iy=:x2z2dV;Iz=:x2y2dV(12-4)Ixy=-:xyd

22、V;Ixz=-:xzdV;Iyz=-?yzdV;Abaqus/CAE操作:切换到优化模块,TaskGeneraltopologytask,DesignResponseCreate:Single-term,Variable:Momentofinertia。5)内力和内转矩、反作用力和反作用转矩和重量在此无特别表述,应变能和体积与式(12-1)和式(12-2)一致。3、形状优化的设计响应针对形状优化,可以使用特征频率、应力、接触应力、应变、节点应变能密度和体积作为设计响应,其中仅体积设计响应可被用以约束定义。1)特征频率(Eigenfrequency):应用Kreisselmaier-Steinh

23、auser公式计算的特征值作为设计响应,并被定义到目标函数中。Abaqus/CAE操作:切换到优化模块,TaskShapetask,DesignResponseCreate:Single-term,Variable:EigenfrequencycalculatedwithKreisselmaier-Steinhauserformula。2)应力和接触应力(StressandContactstress):无论应力是从高斯点还是从单元计算得到,优化模块都会把其插值到节点上。应力和接触应力设计响应尽可被用作定义目标函数。Abaqus/CAE操彳:切换到优化模块,TaskShapetask,Desig

24、nResponseCreate:Single-term,Variable:StressorContactstresso3)应变(Strain):如果是大变形模型,用应力作设计响应就不太合适了,比如金属结构进入塑性变形其塑性区域的应力值几乎一样大。在此情况下选用弹性应变、塑性应变或总应变作设计响应较为合适。Abaqus/CAE操彳:切换到优化模块,TaskShapetask,DesignResponseCreate:Single-term,Variable:Strain。4)节点应变能密度(Nodalstrainenergydensity):其用式(12-5)计算。u=仃ij*ij(12-5)所

25、以针对非线性材料,局部由式12-5可知,节点应变能密度综合考虑了应变和应力,逐点应变能密度能够更好的表征材料失效。Abaqus/CAE操作:切换到优化模块,TaskShapetask,DesignResponseCreate:Single-term,Variable:Strainenergydensity。5)体积(Volume):参考上文已有之表述。12.2.3 目标函数设置目标函数用于定义优化的目标,其是通过对一组设计响应公式运算得到的唯一的标量值,比如设计响应为节点应变能,目标函数可以定义成最小化设计响应总和。优化问题可以用min"U(x)xD表征,其中目标函数中值依赖于状态变

26、量u和设计变量x。由此可知,最小化N个设计响应的目标函数可用式12-6表述。N.in=minSWi代一咪)(12-6),i1同理,最大化N个设计响应的目标函数可用式12-7表述。*max=maxt碟f'(12-7)-id其中,对每个设计响应?都引入一个权重因子w和一个参考值*ref。默认权重因子为1,对拓扑优化的默认参考值为0,而对形状优化的默认参考值是由软件计算而来。另外,还有一个重要的目标函数优化公式,即最小化最大的设计响应,用式(12-8)表述。在每次设计循环,优化程序首先判断哪个设计响应具有最大值,然后最小化这个设计响应。minmax=minmaxiWdi-Eref(12-8)

27、Abaqus/CAE操彳:切换到优化模块,ObjectiveFunctionCreate:Targeto12.2.4约束设置约束是对优化强加限制以获得合适之设计。其可用式(12-9)表述。即设计响应中i被常数约束限制。uiu(x,x中*<0(12-9)通过约束以减少优化方案的尝试,提高优化速度,并获得合适的优化结果。注意:1 .只有体积约束可用应用于拓扑优化和形状优化,但体积不能用作目标函数。2 .针对整体模型或单个区域,可用使用多个不同类型的约束,但不能使用多个相同类Abaqus/CAE操彳:切换到优化模块,ConstraintCreateo12.2.5几何限制几何限制是对设计变量直接

28、施加约束,可用式(12-10)表述。K仅K*<0(12-10)其中,K是对设计变量x布局的表达式。几何限制包括两类:设计上的限制和制造上的限制1、设计上的限制设计上的限制有冻结区域、限制部件最大/最小尺寸。冻结区域(Frozenarea)特别定义一个区域,使其从优化区域中排除,不修改冻结区域内的模型。对加载有预定义条件的区域都必须冻结,为简化此操作,Abaqus优化模块能够自动冻结具有预定义条件和加载的区域。Abaqus/CAE操彳:切换到优化模块,GeometricRestrictionCreate:Frozenarea。最大/最小元件尺寸(Membersize)针对一些设计,不能有太

29、薄的元件,以免加工困难。而针对类似铸造件,又不能有过厚的元件。一旦设定了尺寸限制,优化时间会增加很多,所以,如无必要不要使用此限制。Abaqus/CAE操彳:切换到优化模块,GeometricRestrictionCreate:Membersize。对称结构(SymmetricStructure)设定对称限制,能够加速优化,比如施加轴对称和平面对称、点对称和旋转对称、循环对称等。Abaqus/CAE操彳乍:切换到优化模块,GeometricRestrictionCreate:Planarsymmetry,Pointsymmetry,Rotationalsymmetry,orCyclicsymm

30、etry。2、制造上的限制制造上的限制主要是为了满足可注塑性和可冲压性。注塑性。可注塑性/可锻造性(Moldable/Forgeable)为满足可注塑性,要阻止优化模型含有空洞和负角。图12-5所示意的结构就不具备可(a)含有空洞(b)含有负角图12-5不具备可注塑性Abaqus/CAE操彳:切换到优化模块,GeometricRestrictionCreate:Demoldcontrol;Demoldtechnique,DemoldingwithacentralplaneorDemoldingattheregionsurfaceorForgingo可冲压性(Stampable)图12-6可冲压

31、性结构考虑冲压的特殊性,在优化时,如果删除了一个单元,也会把其前后的单元一起删除,如图12-6所示。针对拓扑优化,Abaqus/CAE操彳:切换到优化模块,GeometricRestrictionCreate:Demoldcontrol;Demoldtechnique,Stamping。针对形状优化,Abaqus/CAE操彳:切换到优化模块,GeometricRestrictionCreate:Stampcontrol。12.3拓扑优化实例针对拓扑优化,一般是用在概念性设计阶段,大幅度改变产品设计。本节举2例详解拓扑优化:C形夹(壳单元)概念设计、汽车摆臂(实体单元)概念设计。12.3.1C形

32、夹的拓扑优化本例以图12-7的C形夹作拓扑优化对象,在满足性能的前提下,最轻化结构。1、问题描述此C形夹的有限元模型见图12-7,边界条件:约束A点的XYZ自由度、约束B点的丫自由度、约束C点的Z自由度、D和E点分别施加方向相反的集中力100N。材料为厚度1mm的铜材C70250:密度8.82E-006kg/mmA3,杨氏模量131000MPa,泊松比0.34,屈服强度473MPa,极限强度816Mpa。优化目标:最小化体积(最轻化);约束条件:D点丫方向位移0.07mm;E点丫方向位移在0.07mm;设计变量:设计区域中的单元密度。图12-7C形夹有限元模型注意:防止D、E点应力集中导致单元

33、畸变,模型中对D、E分别与邻近3个节点Coupling。2、初始设计分析从光盘打开本节图12-7所示的有限元模型12.3.1_C-clip_pre.cae,并提交求解。查看位移云图如图12-8,得知D、E两点的丫方向位移分别为0.0369mm和-0.0369mm。查看应力云图如图12-9,可知近蓝色区域应力值几乎为0,即其对结构强度并无贡献,也正是需要拓扑优化删除的区域。图12-8原始模型丫方向位移云图srC息f:7!17得嫁什。:!*13_S11,440工d.m加*1电*屯1*1.43*1-01+7.17*f4-QQ图12-9原始模型应力云图3、优化设置把打开的12.3.1_C-clip_p

34、re.cae另存为12.3.1_C-clip_opt.cae,CAE界面切换到优化模块以进行拓扑优化设计。创建优化任务从菜单栏TaskCreateTopologyoptimization,Advanced:Generaloptimization。选择整个模型做设计区域,创建优化任务Task-C_clip。对优化任务的设置,一般默认即可,但为防模型失效,如图12-10左图,在Basic选项卡冻结加载和边界区域;同时在初始设计循环时,材料密度突变会不收敛,故如图12-10右图,在Density选项卡对初始密度(Initialdensity)比值设置较大值0.9。图12-10优化任务设置创建设计响应

35、从菜单栏:DesignResponseCreateSingle-termo体积响应:如图12-11所示,选择整个模型创建体积(Volume)响应,对选中的区域体积和的计算默认为:Sumofvalueso图12-11体积设计响应设置位移响应:选择节点D,创建丫方向(2-direction)的位移(Displacement)响应,跟踪选择区域节点中最大值(Maximumvalue),如图12-12所示。当然,这里只选了一个节点(D点),计算方式对结果无影响;同上,选择节点E,创建Y方向(2-direction)的位移(Displacement)响应,区域节点状态值计算方式为Minimumvalue

36、。图12-12D、E节点的位移设计响应创建完成的3个设计响应如图12-13所示。Nan»TypaQfNgtorVarlAblff/D-R#tporii-IDK_D夕ng*晒加陋位tiue(X印以1MM<产D-Reipenw-DhEJingir-irm'MSnirnumD'fplhcfffl«rt,LdL.LopjftBiafnejDtle1,Diatnibs|图12-13创建完成的3个独立设计响应创建目标函数从菜单栏:ObjectiveFunctionCreate,命名为Objective-minVolume,如图12-13以最小化体积设计响应作优化目

37、标。图12-14目标函数设置创建约束从菜单栏:ConstraintCreateo分别创建对节点D、E设计响应的约束,即约束节点位移:D点丫方向位移4.07mm,E点丫方向位移>-0.07mm。如图12-15所示。4、优化结果创建并提交优化进程切换到Job模块,从菜单栏:OptimizationCreateo如图12-16创建名称为Opt-process-C-clip的优化进程,并默认设置最大循环次数50作为全局终止条件。随后从菜单栏:OptimizationSubmit:Opt-process-C-clip,提交优化进程。图12-15D、E图12-16创建优化进程查看优化结果从菜单栏:O

38、ptimizationResults:Opt-process-C-clip,进入后处理模块。后处理模块下,从工具箱中激活"Viewcut,并打开富|ViewcutManager,对Opt_Surface进彳tCut操作,隐藏材料密度小于0.3倍原始密度的区域,查看优化结果如图12-17所示。同时,输出优化进程中,目标函数和约束值变化。操作如下:从工具箱型CreateXYdata:ODBhistoryoutput,分别输出目标函数体积、约束D点位移变化曲线,整理后如图12-18。Lu-.3<i初始模型100%体积20次循环后,53%体积图12-17510152025303E401

39、0次循环后,64%体积36次循环后.48%体积优化结果'.'.'XL议计循环设计循环图12-18目标函数体积和约束位移变化曲线牛百田Sk-g*45St=02干M3工虫¥7才Ft520?-«.23lte01-3.W1«-O2S.Olv01qHl»f5NEGP(trMetlon工(Aug:力M)*5,464e«01*9pjD4994«C14.554*1-01*C1*IS«*O1+3.*43e-01*2.733e*01*-2.177e*01-bl.SZlfri-01*1*4:354«*04*&am

40、p;.537fr'll查看图12-19第36次循环后优化模型位移、应力云图,可与图12-8、图12-9作比较。国力云图Y方向位移云图图12-19第36次优化后的位移及应力云图导出优化的几何切换至UJob模块,从菜单栏:OptimizationExtract:Opt-process-C-clip,可输出Inp和STL格式。5、Inp解释说明结构分析部分的Inp就不再赘述,在此节选优化迭代中的第36次设计循环的Inp文件:Opt-Process-C-clip-Job_036.inp*NEWELEMENTSETADDEDBYTHEOPTIMIZATIONSYSTEM*重新定义单元集*ELSE

41、T,ELSET=EL_P1_M39608,* *NEWPROPERTYADDEDBYTHEOPTIMIZATIONSYSTEM* *对单元集赋予新的材料* SHELLSECTION,ELSET=EL_P1_M39,MATERIAL=OPT_391.0000000,5* *NEWMATERIALADDEDBYTHEOPTIMIZATIONSYSTEM* *新添加的材料属性"MATERIAL,NAME=OPT_39* *新的密度*DENSITY8.8200000e-011,0.00000000,* *新的弹性模量*ELASTIC,TYPE=ISOTROPIC0.00013100000,0

42、.34100000,0.00000000*新的塑性应变-应力数据*PLASTIC,HARDENING=ISOTROPIC4.7336200e-007,0.00000000,0.00000000,5.0900000e-007,0.0010040100,0.00000000,*本12.3.1节完整讲述了C形夹的拓扑优化,在满足强度要求的同时,把体积减少了48%。此外,为了加工制造方便,可加入平面对称限制条件,让优化后的结构具有对称性。12.3.2汽车摆臂的拓扑优化本例以图12-20的汽车摆臂作拓扑优化对象,在满足性能的前提下,最轻化结构。1、问题描述此汽车摆臂的有限元模型见图12-20,所用材料为

43、刚材,此模型是小应变,仅设置线性材料,其密度7.85E-006kg/mmA3,杨氏模量200000MPa,泊松比0.3。此有限元模型,设置了3步线性静力分析步,即3个工况;分别Coupling相应节点到参考点上(A、B、C、D)。边界条件:约束B点的Y、Z自由度,C点的X、Y、Z自由度,D点的Z自由度;集中力加载:在1、2、3分析步,分别对A点加载X、Y、Z方向的1000N集中力;优化目标:最小化体积;约束条彳41:在1、2、3分析步,A点合位移分别小于0.05mm、0.02mm、0.04mm;设计变量:设计区域中的单元密度。图12-20汽车摆臂的有限元模型2、初始设计分析从光盘打开本节图12

44、-20所示的有限元模型12.3.2_Controlarm_pre.cae,并提交求解。查看位移云图如图12-21,可大概了解结构的加载变形情况。查看应力云图如图12-22,可知近蓝色区域应力值几乎为0,即其对结构强度并无贡献,也正是拓扑优化需要删除的区域。Step1Step2U.MWhkidv*M31*412J0小十2.71£«-O3+03*l.liiheG+i.MMJ-ma*1.207«-43*#4153*44事图12-21原始模型位移云图Step1一核MM器理olalol/般之皆弟瞿4|落h1s%-b7Es1742JaJ332721119B3<5:4i口

45、URgQQ口n0111iaP0o-aflooull*«-e-mFqS,Hri£«t*0打7,*lr5B3*+W*l.Q7D*+QO事中一修。工*544-29&4-6143.T19«-0B*42f03+6图12-22原始模型应力云图3、优化设置把打开的12.3.2_Controlarm_pre.cae另存为12.3.2_Controlarm_opt.cae,CAE界面切换到优化模块以进行拓扑优化设计。创建优化任务从菜单栏TaskCreateTopologyoptimization,Advanced:Generaloptimization。选择单元集

46、Set-DESIGN做设计区域,创建优化任务Task-Carm。设置和图12-10一致。创建设计响应从菜单栏:DesignResponseCreateSingle-termo体积响应:选择整个模型创建体积(Volume)响应,和图12-11一致,对区域内单元体积的计算默认即为:Sumofvalues。第1step的位移响应:如图12-23,跟踪节点Set-A在第1分析步中的AbsoluteDisplacement最大值。图12-23Step-1_Xforce分析步中A点最大位移响应同理,创建第2和第3分析步中的A点最大位移值响应,仅图12-23示中第5处不同。创建完成的1个体积响应和3个位移响

47、应,如图12-24所示。KimiTyp*OperatorUarhbh口工口亡卬口立UepudispSingr-fcrrrnManinurn口即辰.emeHRe4pon&e-p_die.pSinge-termMajcomurnDlsplacemeri:D-ftcsponsc-Jstrp.disp5i力0e-tefffliMsxiniLiTiDisplsCEFhiffirtD-ResponSrS-VcjJume>King丸mVolume窑Cecignq三三h/snsqsrCre1ahe=Edit-;Copy.«DeleteDismiEE图12-24完成后的全部响应创建目标函

48、数从菜单栏:ObjectiveFunctionCreate,命名为Objective-minVolume,如图12-25最小化体积设计响应作优化目标。创建约束从菜单栏:ConstraintCreateo创建节点A响应D-Response-1step_disp的约束Constraint-1step_disp,即约束节点A在第1分析步中的位移<0.05mm,如图12-26所示。同理,对D-Response-2step_disp约束<0.02mmD-Response-3step_disp约束<0.04mm。3个约束设置完成,如图12-27所示。图12-25最小化体积目标函数图12-

49、26对D-Response-1step_disp的约束创建几何限制为了优化后的零件便于锻造,特对设计区域Set-DESIGN加上几何限制。可锻造性限制:如图12-28(a)创建几何可锻造性限制,从菜单栏:GeometricRestrictionCreate:Demoldcontrol。平面对称限制:如图12-28(b)创建平面对称限制,从菜单栏:GeometricRestrictionCreate:PlanarSymmetry。对称平面的坐标可以是默认的全局坐标,因其原点就在A点。(a)可锻造性几何限制(b)平面对称几何限制图12-28几何限制4、优化结果创建并提交优化进程切换到Job模块,从

50、菜单栏:OptimizationCreateo创建名称为Opt-process-Carm的优化进程,并默认设置最大循环次数50作为全局终止条件。随后从菜单栏:OptimizationSubmit:Opt-process-Carm,提交优化进程。查看优化结果从菜单栏:OptimizationResults:Opt-process-Carm,进入后处理模块。后处理模块下,从工具箱中激活Viewcut,并打开一ViewcutManager,对Opt_Surface进彳tCut操作,隐藏材料密度小于0.3倍原始密度的区域,查询优化设计结果,如图12-29所示。图12-29优化结果同时,输出优化进程中,

51、目标函数和约束值变化,操作如下:从工具箱CCreateXYdata:ODBhistoryoutput),分别输出目标函数体积、约束A点位移变化曲线,整理后如图12-30,体积逐渐减小的情况下,A点在分析步1、2、3中最大位移分别小于0.05mm、0.02mm、0.04mm。0610IF302G303G05101520253035设计循环设计循环图12-30目标函数体积和约束位移变化曲线查看如图12-31所示白第30次循环后优化模型的位移及应力云图,与图12-21、图12-22作比较,其最大应力增大少许,位移也在许可范围内。-*4.2Bem+331e-D2+3,573»-02-7.21

52、65022.偌5学02 士.5口工总。2+J,l«<03+1.767e-01 *1X3662+l,Q72t-01+7,147fr-Q3 +3.573e-03*QQgCQQ&MiIm-c(Avg:75%Ir+2.2ei«-nOQ+2.072c*00k+i博au+。+1.i&5e4001+1.507i-b001+1.315e+0C,+1.13Df+00L+9.41-9e-011+7bS35«-01+5.6S1«-O1r+3.7««<01f+laSB4e-01L+9用冲1。第3分圻步,之祚金隅第3分析步.应力云图

53、图12-31第30次优化后的位移及应力云图(仅第3分析步)导出优化的几何切换到Job模块)从菜单栏:OptimizationExtract:Opt-process-Carm,可输出Inp和STL格式。5、Inp解释说明请参考结果文件:X:XXXOpt-Process-CarmSAVE.inp,其内容和12.3.1节类同。本12.3.2节完整讲述了汽车摆臂的拓扑优化,在满足强度要求的同时,把体积减少了33%,其中,为了便于加工制造,创建了可锻造性及平面对称限制条件。以上内容,如有不明之处)可参考光盘中本节优化设置的有限元模型12.3.2_Controlarm_opt.cae。12.4形状优化实例

54、针对形状优化,主要是用在细节设计阶段,小幅度提升产品结构性能。本节以折弯端子(Terminal)的正向力(NormalForce)分析为例,详解形状优化。12.4.1 问题描述端子件Terminal正向力分析有限元模型见图12-32,所用材料为厚度0.2mm的铜材C70250,其密度8.82E-006kg/mmA3,杨氏模量131000MPa,泊松比0.341,屈服强度473MPa。此模型有2步非线性静力分析步,3个Part(刚体Plug和Housing、变形体Terminal)。位移加载:第1步:Plug在-Y方向移动0.8mm,第2步:Plug返回到原位;边界条件:完全约束Terminal

55、根部边,完全约束刚体Housing;优化目标:最小化最大应变能密度;约束条件:体积不变;设计变量:设计区域边界节点移动。图12-32端子件正向力分析的有限元模型12.4.2 初始设计分析从光盘打开本节图12-32所示的有限元模型12.4_Terminal_pre.cae,并提交求解。1、查看位移、应力云图查看端子位移云图,如图12-33,可知Plug返回原位后,端子的接触点永久变形PD(Permanentdeformation)=0.16mm;查看端子应力云图,如图12-34,可知在Plug最大下压位移时,端子有较大屈服区域,即应力大于473Mpa的区域。(CreateXY2、绘制力-位移曲线

56、创建Plug的力-位移曲线:在后处理模块下,点击工具箱中的DateODBhistoryoutput),同时读取Plug的丫位移U2和反力RF2。然后,CreateXYDateOperateonXYdata,用Combine(U2,RF2)函数生成图12-35所示的力-位移曲线。从图可知,最大NormalForce(NF)为1.57N,接触点永久变形0.16mm。科软饬PD=Q.16niT1MODDB:Jofa-K.tBmriai-KF-odbAbsqusfStandard4.12-3IneremenEIO:StepTime=l.DODVmUrUI-7b38?*-Q2-1.414401-5,1X3#-D1017J37*01-fl

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论