机械设计制造及自动化专业毕业设计说明书—齿轮传动建模与仿真_第1页
机械设计制造及自动化专业毕业设计说明书—齿轮传动建模与仿真_第2页
机械设计制造及自动化专业毕业设计说明书—齿轮传动建模与仿真_第3页
机械设计制造及自动化专业毕业设计说明书—齿轮传动建模与仿真_第4页
机械设计制造及自动化专业毕业设计说明书—齿轮传动建模与仿真_第5页
已阅读5页,还剩63页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、基于Pro/e少齿数(Z=2)齿轮传动的建模与研究王军(陕理工机械工程学院机械设计制造及其自动化专业机自041班,陕西 汉中 723003)指导教师:王保民摘要:阐述了少齿数渐开线圆柱齿轮机构的传动特点, 论述了渐开线和过渡曲线的方程推倒及其参数的确定,阐明了变位系数、螺旋角和几何尺寸的确定及计算, 从而奠定了少齿数渐开线圆柱齿轮机构机构学的理论基础。齿轮的参数化设计是提高齿轮建模效率的有效途径,基于Pro /E Wildfire 4.0 平台的参数化精确建模功能, 通过编Pro/E的模型程序, 实现了少齿数齿轮自动化建模设计, 并且实现齿轮基本参数的改变自动生成新齿轮。该齿轮设计方法可使设计

2、人员方便快捷地实现齿轮的三维特征造型设计,从而提高设计效率。关键词:坐标转换 少齿数 变位系数 PROE软件 传动 仿真Based on PROE(Z = 2) less teeth of Gear drives Modeling and ResearchWang jun(Grade04,Class1,Major Machine design manufacture and automation,Mechanical engineering institute Dept,Shanxi University of Technology, Hanzhong 723003, Shanxi)Tutor

3、: Wang BaominAbstract: In this paper, we first introduce the determ ination of engaging point, and the characteristics of involute、conjugate profile. In section 2, we present methods for determ ining the modification coefficient, helical angle, and geometric size of low number teeth involute spur ge

4、ar mechanism. Some conclnsions are drawn in section 3. The gear is to improve the design parameters of gear modeling efficient and effective way, based on the Pro/E Wildfire 4.0 platform for accurate modeling parameters of the function of an editorial Pro / E of the model program, has less teeth gea

5、r design automation modeling, and To achieve the basic parameters change gears automatically generate a new gear. The gear design allows designers to quickly and easily achieve the three-dimensional characteristics of gear design, thereby improving the efficiency of the design.Key words: Coordinate

6、Conversion; Low-number Teeth; Modification coefficient; PRO/E software; Transmission; Simulatio目 录1前 言11.1 研究意义11.2 少齿数齿轮现状分析11.3 齿轮成形技术的现状21.4 Pro/Engineer22 理论分析与研究阶段42.1 理论基础42.2 坐标转换法推导齿轮齿廓线方程52.1.1 齿廓曲线普遍方程式的推导52.2.2 齿轮的渐开线的方程式求解72.2.3 齿轮的过渡曲线的方程式求解112.3 少齿数计算过程132.3.1 数据初定132.3.2 设计结果校核计算142.3

7、.3 修正设计结果203 三维建模223.1 软件简介223.1.1 Pro/Engineer软件包223.1.2 ProASSEMBLY安装模块233.2 参数化技术简析233.3 齿轮的参数化建模设计243.3.1 零件分析243.3.2 绘制齿轮253.4 参数化问题分析324 其他零件的设计建模344.1 轴344.2 轴承344.3 端盖354.4 箱体364.5 箱盖375 减速器的装配总成385.1 零件装配的基本流程385.2 装配过程中常用的配合方法385.3 装配396 减速器的运动仿真416.1 运动仿真416.2.1 运动仿真概述416.2.2 减速器仿真41总结42致

8、谢43参考文献44外文翻译45附录55附录 A 基本理论依据55附录 B 齿轮绘制在proe软件中的公式程序化过程56附录 C C语言验证程序59附录 D Autolisp 程序601前 言1.1 研究意义可以在传动比不变的情况下减少齿轮传动的体积与尺寸。也可在不改变齿轮传动体积与外形尺寸时,可得到较大的传动比,或使传动链缩短。研究少齿数齿轮传动正是解决齿轮传动小型化的突破口,从而使齿轮传动装置的体积减小,质量减轻,结构简化,成本降低。少齿数齿轮的齿数越少,这项研究便越有意义。目前对齿数少于8的齿轮参数选择时比较难确定,虽然有变位齿轮的计算公式和齿廓曲线的方程,但是不是很完善,只有变位直齿轮过

9、渡曲线和渐开线的方程推倒,齿形的绘制也只是在范成仪上实现,设计效率比较低,此次设计使我有了对少齿数齿轮设计的理论基础和对PRO/E参数化建模的方法,在确定出方程中的参数后,用Pro/E软件将过渡曲线和渐开线曲线方程生成变位齿轮齿廓, 这两条齿廓是精确的过渡曲线渐开线,而且由于建模过程实现参数化,只要修改齿轮模数、齿数、压力角、螺旋角等齿轮参数,就可以快速构建得到另一齿轮零件,不仅设计效率高,而且齿轮的齿形准确,能更好地为后续齿轮机构的动态仿真、干涉检验,设计程序可以在PRO/E软件中用记事本显示设计,为设计者提供出理论依据,并能够清楚的查看齿廓有无根切现象和齿顶变尖现象,在加工前对模型有一个感

10、性认识。1.2 少齿数齿轮现状分析少齿数齿轮传动主要应用在低功率大转速的场合,如磨铰机、电动自行车,手动葫芦,减速器等机械中应用较多少齿数渐开线圆柱齿轮减速器是齿轮传动技术上的新进展, 因为减少小齿轮的齿数可显著增大齿轮的传动比; 并可减小减速器的外廓尺寸和重量, 具有一定的技术经济效益。当渐开线圆柱齿轮齿数在24之间取值时称为少齿数; 由于齿数的小齿轮与大齿轮组成的齿轮副称为少齿数渐开线圆柱齿轮机构。对于这种机构, 由于小齿轮齿数较少, 首先为避免根切, 须采用大变位系数的正变位; 这样又引起齿顶变尖而导致齿顶高缩短。其次由于端面重合度大幅度降低而须采用较大螺旋角和较大齿宽的斜齿轮传动。再次

11、由于齿面相对滑动速度较在也带来新的问题。本次设计就是针对这些问题进行理论和技术研究, 设法予以解决。目前对少齿数齿轮齿廓绘制只是用范成仪实现,不能在设计前看到齿轮的实体模型。 近代工业愈来愈要求齿轮传动装置既能承受高速重载,又要小型化.动力齿轮传动的齿轮装置发展趋势为:小型化(高承载能力)、高速化、标准化。利用 P ro /E可精确建立齿轮的三维模型 ,从而实现齿轮机构的虚拟装配、模拟运动以及数控编程等。因此PRO/E对少齿数齿轮的实体建模可以提高设计效率。未来5 0 年齿轮创新的趋势,是追求小、净、静、高可靠性、高强度、高转速、低材耗、低能耗、低重量等。目前对少齿数齿轮传动的理论研究比较少,

12、而且对于齿数小于8的齿轮的参数取值比较难确定,根据文献推倒出少齿数齿轮的轮廓的理论计算,但是对齿轮齿廓的绘制只是通过范成仪实现,没有对少齿数齿轮实体造型的研究。1.3 齿轮成形技术的现状齿轮齿形的演变: 最原始的木制齿轮齿形是直线形。1 8 世纪后,渐开线齿轮逐渐得到广泛应用。2 0世纪初,美国人首先提出圆弧齿形,5 0 年代完成这项研究,6 0 年代被命名为W . N 齿轮。近几十年来,由于航空工业及其他机械工业的不断发展,传统的渐开线齿形逐渐被渐开线修形齿形所取代。近代渐开线齿轮( 包括修形齿) 、摆线齿形、圆弧齿形同时共存,其中渐开线齿形占主导地位,但他们各自有其独到的优越性,不可能被其

13、中任何一种齿形完全取代。加工工艺的改善: 古代的木制齿轮、铜制齿轮和铸铁齿轮均采用手工生产。1 7 世纪末,已能用成形法切齿形,但铸造工艺还是加工齿轮的主要方法。此后,齿轮金属切削水平的提高,大大推动了齿轮加工技术的发展。近年来,随着高科技的发展和人们对机加工齿轮的强度和承载能力要求的提高,齿轮的精密成形技术便应运而生,其中,锥齿轮的精锻已日趋成熟;直齿轮的镦挤、正挤还有待进一步研究,以期早日投入规模化生产,为人类服务。1.4 Pro/Engineer少齿数齿轮是在现代机械中新型一种传动机构。利用Pro /E可精确建立齿轮的三维模型,从而实现齿轮机构的虚拟装配、模拟运动等。要充分发挥Pro /

14、E的作用、提高设计效率,必须对Pro /E进行功能拓展,加入特定产品设计的专用模块,因此二次开发势在必行。本研究基于渐开线齿轮的生成原理,结合Program程序,研制出少齿数齿轮三维实体造型的全参数化自动设计程序。Pro/E 程序功能: Pro/E 系统的核心建模思想是参数化。也就是在尺寸、尺寸之间进行参数化, 并且模型的各约束、特征之间都可以建立关系式。Pro/E 系统在每个模型建立好以后, 都会以记事本的格式显示其程序文件。程序的实质是系统对模型的每个零件的特征的建立, 会以特定程序的方式记录其建立过程和生成的条件。而系统又允许用户对所建立的程序进行编辑, 以控制模型中的特征。本文就是利用

15、这一功能, 针对齿轮产品的应用广泛而类型又多样, 通过编辑建立齿轮模型的程序文件, 来更改齿轮的机械参数, 最终实现人机交互的问答式来更改齿轮的机械参数, 使设计具有相对的弹性, 体现Pro/E 参数设计的核心理念, 以完成新类型( 譬如直齿圆柱齿轮、斜齿圆柱齿轮、人字齿轮) 齿轮的自动化设计, 提高工作效率。2 理论分析与研究阶段2.1 理论基础齿轮啮合的基本定律:相对啮合传动的一对齿轮在任意位置的传动比,都与其连心线被其啮合齿廓在接触点的公法线所分成的两段成反比。选择的齿廓曲线:齿轮的齿廓曲线有渐开线、摆线、变态摆线、园弧齿廓以及抛物线齿廓等,从传动设计制造安装使用等方面考虑,应用作为广泛

16、的是渐开线齿廓。随着机械工业的发展,对齿轮传动装置提出了高速、重载、体积小、重量轻、噪声小、效率高、寿命长等一系列要求,发现渐开线标准齿轮传动有很大的局限性,已不能完全满足上述要求,渐开线变位齿轮得到了越来越广泛的应用。但是还是在渐开线的基础上的应用。渐开线齿廓的加工原理:齿轮渐开线齿廓加工的基本要求是保证齿形的准确和分齿的均匀。目前齿轮齿廓的加工方法很多,除铸造冲压轧制外应用最广的还是且学加工的方法。按切制原理的不同,齿轮的切制方法有成型法和范成法两种,本次设计就是在范成法的基础上得到推导理论公式并在proe实践的。范成法的实质关键保持刀具与齿坯之间按渐开线齿轮啮合的运动关系来解决齿轮加工的

17、基本问题保证齿形准确和分齿均匀。范成法的加工种类有滚齿、插齿、剃齿、磨齿、珩齿等,在本设计中选用的为滚齿的方法。 当齿条以匀速移动式,推动齿轮以转速等速转动,齿轮移动的速度和齿轮分度圆上的圆周速度相等。齿条刀齿侧面齿廓的运动轨迹的包络线,正好能形成齿轮的渐开线齿廓,如果将齿条磨出刀刃来,它像刨刀一样上下做往复运动,同时强制性的保证齿条刀具和齿坯之间的切削运动,严格的按照齿条与被加工渐开线齿轮啮合时的运动关系,就能够把齿坯切成渐开线齿轮。2.2 坐标转换法推导齿轮齿廓线方程 齿廓曲线普遍方程式的推导用齿条形刀具加工齿轮时,被切齿轮齿阔曲线的普遍方程式的求解。用齿条形刀具加工渐开线的基本原理如图2

18、.1所示为基准齿条形道具的基本参数,在加工齿轮时,要满足两个基本条件:一是刀具的中心线与轮坯的分度圆相切,二是刀具移动速度与轮坯的角速度之间关系为。而在加工变位齿轮时,刀具与轮坯之间的关系不变,仅仅是改变了刀具与轮坯之间的相对位置,即刀具远离或者靠近轮坯的回转中心,变位量用表示。变位后与轮坯相切的分度圆相切的不在是齿条的中线,而是与中线相平行的某一条节线。由于刀具顶部加工的是轮坯的根部,而轮坯齿根高为,所以刀具比传动用齿条齿顶高出,故中线实际为齿高方向的中点线,简称中线。与中线相平行的称为节线。图2.1 非修缘的基准齿条刀具在法面内的齿形参数(按照GB1356-78、JB110-60)当图2.

19、1中所有各参数都确定时,就认为齿条刀具的齿廓已经确定,因而齿条刀具上的任意一点在坐标系中的坐标也就确定,然后就可以用坐标转换法就可以求出齿轮齿廓方程式。这里的坐标转换法具体是指:齿条刀具和被加工齿轮在做范成滚切运动时,已知刀具齿廓上所有各点在坐标系中的坐标,将其变换为被加工齿轮齿廓上所有各点在坐标系的坐标,即得出齿轮齿廓的普遍方程式。具体过程如下:建立坐标系(参见下图2.2)图2.2 用齿条形刀具切制轮齿时确定轮齿上各点坐标的是意图1静坐系坐标原点取在图2所示轮齿的对称轴上,且与齿轮中心相距距的点上,为轮齿的根圆,z为齿数。轴为轮齿的对称轴,轴过点,且垂直于轴。2动坐标系动坐标系固联在齿条刀具

20、上,随刀具的运动而动,故称之为动坐标。动坐标系的原点取在图2所示齿轮的对称线轴与分度圆的交点处,为沿轮齿的对称轴,向左为正。轴过点,并与对称轴垂直,向上为正。由以上建立的坐标系可知:动坐标系轴恒与轮坯分度圆相切,且做纯滚动。(即用齿条形刀具加工齿轮时,动坐标系的坐标轴沿被切齿轮的分度圆做纯滚动。)设在齿条刀具齿廓上任取一点, 在动坐标系中的坐标值为,求出与共轭(相啮合)的点在静坐标系中的坐标值。在运动之初,轴与轴重合,在运动过程中,动坐标系的轴与齿轮的分度圆始终相切,且保持纯滚动的运动关系(这是求点坐标的基础)。图2.2所示为动坐标系在滚动包络过程中某瞬时所处的位置。与原始位置相比,刀具节线(

21、轴)在分度圆上滚过的角度记为过作齿条刀具的齿廓法线,法线与节线的交点为。由于两点为共轭点,所以图示位置两点重合。现将齿轮与齿条看成是两个构件,由于两个构件作相对纯滚动,因此构件的瞬心就是二者的切点。当齿条刀具节线在沿齿轮分度圆作纯滚动到点时,则齿条刀具齿廓上的点必然与齿轮齿廓上的点重合,过这两共轭齿廓在(或)处的公法线(或)必然通过它们的相对滚动瞬心。于是将点投影到静坐标系上,就可以得到被加工齿轮齿廓的上点在静坐标系中的坐标,从而得到被加工齿轮齿廓的普遍方程式 (1)式中 齿条刀具的滚动角,其值为 (2)由式(1)及(2)分析可知,若点的坐标、PN及值都已知时,就可以求出点在静坐标系中的坐标。

22、若取齿条刀具上的若干点,利用式(1)求出相应各点的坐标,标记于坐标系中,最后再把这些点连接起来就得到了齿轮的齿廓。 齿轮的渐开线的方程式求解式(1)说明欲求,需知刀具上的, ,或PN,而与是有关系的,因此还要求出与角之间的关系式。如图2.2所示,在刀具的直线刀刃上取一点,在动坐标系中点的坐标为,图中的值可以理解为:刀具的中线轴与点所在的刀刃交点到坐标原点的距离。图2.3 齿条刀具齿廓的坐标示意图:直齿齿齿廓部分由以图2.3可推出,点的坐标为 (3)将上式代入(1)式可得齿轮的渐开线的方程式为 (4)上式中滚动角的变化范围为 (5)式中 ,变位系数在切齿过程中,与的求解公式,由图求解详图可知 (

23、6)在的坐标系中,点的坐标为图2.4 求解详图 (7)将(1)时代入(2)式得点坐标, (8)将各值代入(4)式方程可求出齿轮渐开线上具体的各点,从而做出渐开线图形。注:在由(4)式绘制渐开线区曲线时,轴为齿廓的对称轴,与轴相垂直的轴通过齿根圆与齿槽(齿间)对称轴的交点,由此便确定了坐标原点。切削渐开线齿轮齿廓线段时角的变化范围计算为了更好的说明的求解的过程,先绘制一个非修缘齿廓,见图2.5图2.5为一非修缘齿廓曲线,其中是齿廓的对称轴,与垂直的轴通过齿根圆与齿槽对称轴的交点,于是便确定了坐标原点与齿轮中心之间的距离为。图2.5所示的非修缘齿廓曲线由四部分组成1)齿根圆弧,其半径为;(为轴与齿

24、根圆的交点,也是齿根圆与对称轴的交点,即齿根圆上齿槽的中点。)2)过渡曲线;3)渐开线部分(基本齿廓部分);4)齿顶圆,其半径为。(为齿顶圆齿厚的中点。)图2.5 渐开线齿廓段曲线滚动角的变化范围推倒详图点为过渡曲线与渐开线的交点,所以切削过渡曲线时,滚动角角的最大值为切削渐开线的最小值,切削渐开线时滚动角的最大值求解,见图2.6:刀具的直线部分切制渐开线曲线,所以齿全高按照考虑在中,而在中图2.6 齿廓曲线渐开线段滚动角的变化范围推导详图所以在切削渐开线时,角的变化范围为,即(5)式 (5) 齿轮的过渡曲线的方程式求解过渡曲线是由齿条刀具的齿顶倒圆部分切制出来的。图2.7 齿条刀具齿廓的坐标

25、示意图 齿顶倒圆部分图2.7所示为齿轮刀具的齿顶倒圆部分,其中点为倒圆部分的圆心。点是倒圆圆弧上的任意一点,点是的法线与坐标系中轴的交点。因为法线通过点,而点的坐标为,所以依照图7即可求出点在坐标系中的坐标: (8)注:是的函数,是自变量。式中 (9)将(8)式代入(1)式中,即得出齿轮过渡曲线方程式 (10)注:(10)中自变量为式中滚动角的变换范围为 (11)式中参数的变动范围为 (12)式中 齿条刀具齿廓的齿形角,对于直齿轮。在用公式(10)绘制齿轮过渡曲线时,公式中包含了两个自变量,必须要找出它们的关系,才能画出过渡曲线,其关系可由图2-12中得到:将公式(8)代入在绘制过渡曲线时,先

26、在的范围内给定角,有上式求出相应的角,再由(10)绘制过渡曲线。过渡曲线方程滚动角的变化范围计算如图2.8所示,刀刃上的切削的是齿根过渡曲线段,当刀刃上的点与过渡曲线上的点重合时角最小,点切削点时,角最大。在图2.8中,过刀刃上b点的法线必过圆心,连接并延长即为刀刃上点的法线。图2.8 过渡曲线滚动角的变化范围推导详图所以 (角的单位为弧度)连接交轴于 所以切削是过度曲线段时,角的变化范围为,即(11)式 (11)2.3 少齿数计算过程2.3.1 数据初定齿轮副 设计中心距:; 法面摸数:; 传动比:; 分度圆螺旋角:; 齿轮宽度:; 端面啮合角:; 端面重合度:; 轴面重合度:;小齿轮(齿轮

27、轴)端面径向变位系数:;齿顶高系数:; 顶隙系数:;分度圆直径:;齿顶圆直径:; 齿根圆直径:;跨1个齿公法线长度:。大齿轮(齿圈)端面径向变位系数:;齿顶高系数:; 顶隙系数:;分度圆直径:;齿顶圆直径:; 齿根圆直径: ;法面固定弦齿厚:,法面固定弦齿高。2.3.2 设计结果校核计算齿轮副有关的参数验算标准中心距:端面啮合角:(1)端面压力角(2)端面啮合角设计结果:重合度(1)端面重合度其中: 设计结果: (2)轴面重合度设计结果: (非b圆整为13mm的对应值)(3)重合度啮合顶隙 (比大是由于小齿轮顶变尖,相当于削顶。)端面径向变位系数取:设计结果:中心距变动系数齿顶高变动系数小齿轮

28、齿根过渡曲线与大齿轮(齿圈)齿顶渐开线干涉验算不发生干涉的条件:-刀顶圆弧半径; mm;。可将不发生干涉条件变成以下形式,便于计算:令:大齿轮齿根过渡曲线与小齿轮齿顶渐开线干涉验算 小齿轮的几何尺寸验算齿顶变尖时的齿顶圆压力角试凑得:齿顶圆设计结果:。齿根圆设计结果:,偏大0.001mm。全齿高(齿顶变尖相当于削顶,削顶量为, 削顶系数为)跨一个齿的公法线长度根据朱景梓的推导结论(同齿轮手册),未考虑切向变位的影响时: 大齿轮(齿圈)几何尺寸计算分度圆直径mm齿顶圆直径 (1)啮合干涉限制的极限齿顶圆直径(2)削顶后的齿顶圆直径 故 设计结果: ;干涉。齿根圆直径设计结果:全齿高 (干涉削顶量

29、为 , 削顶系数为)法面固定弦齿厚未考虑切向负变位的影响设计结果:法面固定弦齿高未考虑切向负变位的影响设计结果:2.3.3 修正设计结果初步设计结果经验算,会发生啮合时齿圈齿顶与小齿轮齿根过渡曲线干涉。修正设计结果其它设计结果不变,调整三个参数。重新验算重合度 (不变)重新验算顶隙(标准顶隙)(齿顶变尖,相当于削顶量为, 削顶系数为)(为避免干涉需削顶,削顶量为,削顶系数为0.21096;其中、)3 三维建模3.1 软件简介Pro/Engineer是一套由设计到生产的机械自动化软件,是新一代的产品造型系统,是一个参数化、基于特征的实体造型系统,并且具有单一数据库功能。Pro/Engineer是

30、美国参数化技术公司PTC的优秀产品,提供了集成产品的三维造型设计、加工、分析及绘图等功能的完整的CAD/CAE/CAM解决方案。该软件以使用方便、参数化造型和系统的全相关性而著称。目前Pro/Engineer软件在我国的机械、电子、家电、塑料模具、工业设计、汽车、自行车、航天、家电、玩具等行业取得了广泛的应用,该软件在国内的应用数量大大超过了同类型的其它国外产品。Pro/Engineer可谓是个全方位的3D产品开发软件,集合了零件设计、产品组合、模具开发、NC加工、饭金件设计、铸造件设计、造型设计、逆向工程、自动测量、机构仿真、应力分析、产品数据管理于一体,其模块众多。主要由以下六大主模块组成

31、:工业设计(LAID)模块、机械设计(CAD)模块、功能仿真(CAE)模块、制造(CAM)模块、数据管理(PDM)模块和数据交换( Geometry Translator)模块。参数化设计和特征功能Pro/Engineer是采用参数化设计的、基于特征的实体模型化系统,设计人员可采用具有智能特性的基于特征的功能去生成模型,如腔、壳、倒角及圆角等,可以随意勾画草图,轻易改变模型。这一功能特性给计者提供了在设计上的简易和灵活。3.1.1 Pro/Engineer软件包Pro/Engineer是软件包,并非模块,它是该系统的基本部分,其中功能包括参数化功能定义、实体零件及组装造型,三维上色实体或线框造

32、型棚完整工程图产生及不同视图(三维造型还可移动,放大或缩小和旋转)。Pro/Engineer是一个功能定义系统,即造型是通过各种不同的设计专用功能来实现,其中包括:筋(Ribs)、槽(Slots)、倒角(Chamfers)和抽壳(Shells)等,采用这种手段来建立形体,更自然,更直观。这系统的参数化功能是采用符号式的赋予形体尺寸,这样可任意建立形体上的尺寸和功能之间的关系,任何一个参数改变,其它相关的特征也会自动修正,使得修改更为方便,设计优化更趋完美。Pro/Engineer的主要特性有:(1)相关性(Full Associativity)(2)基于特征的参数化建模(3)数据管理(4)装配

33、管理(5)工程数据库重用(6)易用性(7)硬件独立性。Pro/Engineer功能如下:1.特征驱动(例如:凸台、槽、倒角、腔、壳等);2.参数化(参数=尺寸、图样中的特征、载荷、边界条件等);3.通过零件的特征值之间,载荷/边界条件与特征参数之间(如表面积等)的关系来进行设计。4.支持大型、复杂组合件的设计(规则排列的系列组件,交替排列,ProPROGRAM的各种能用零件设计的程序化方法等)。5.贯穿所有应用的完全相关性(任何一个地方的变动都将引起与之有关的每个地方变动),其它辅助模块将进一步提高扩展ProENGINEER的基本功能。3.1.2 ProASSEMBLY安装模块Pro/ASSE

34、MBLY是一个参数化组装管理系统,能提供用户自定义手段去生成一组组装系列及可自动地更换零件。Pro/ASSEMBLY是Pro/ADSSEMBLY的一个扩展选项模块,具有如下功能:1在组合件内自动零件替换(交替式)2规则排列的组合(支持组合件子集)3组装模式下的零件生成(考虑组件内已存在的零件来产生一个新的零件)4Pro/ASSEMBLY里有一个Pro/Program模块,它提供一个开发工具。使用户能自行编写参数化零件及组装的自动化程序,这种程序可使不是技术性用户也可产生自定义设计,只需要输入一些简单的参数即可。5组件特征。注:还有ProCABLING选用性和ProCAT光缆布线模块等,以及其它

35、多项模块、功能,但由于本次实际不涉及,不再详述。3.2 参数化技术简析参数化技术以约束为核心,是一种比约束自由造型技术更新颖、更好的造型技术。该技术将复杂的设计过程分解为三个子过程,即草图设计、对草图施加约束以及约束求解。参数化技术具有以下三方面的优点:(1)设计人员的初始设计要求低,无须精确绘图,只须勾绘草图即可,然后可通过适当的约束得到所需精确图形。(2)便于系列化设计,一次设计成型后,可通过尺寸的修改得到同种规格零件的不同尺寸系列。(3)便于编辑、修改,能满足反复设计需要,当在设计中发现有不适当的部分时,设计者可通过修改约束而方便地得到新的设计。这些优点使得参数化技术非常适合于对整个设计

36、过程的支持。因为设计的目的是为了满足一定的功能需求,而这些功能需求往往可以转化为适当的设计约束。设计者通过对一设计约束的控制可以方便灵活地实现产品的功能。Pro/Engineer系统最典型的特点是参数化,体现参数化除使用尺寸参数控制模型外,还在尺寸之间建立数学关系式,使它们始终保持相对的大小、位置或约束条件。在零件模式下,系统允许建立特征之间的关系式,使得零件中的不同特征产生关联,此时创建的参数关系式成为零件关系式。同时在零件与装配模式中,系统还允许在阵列特征或阵列元件间建立参数关系式。3.3 齿轮的参数化建模设计3.3.1 零件分析斜大变位正常齿数的齿轮外形由轮齿、键槽、轴孔等基本结构特征组

37、成。齿轮建模的操作步骤如下:(1)添加齿轮设计参数图3.1 新建对话框图3.2 尺寸选择(2)添加齿轮关系式(3)创建齿轮的齿廓曲线:2)添加齿轮关系式3)创建渐开线方程4)创建过渡曲线方程5)创建螺旋线线方程(5)实体生成:1)创建螺旋线线方程2)拉伸3)阵列3.3.2 绘制齿轮(1)新建文件:启动PROE Wildfire4.0,单击工具栏新建工具,或单击菜单“文件/新建”。出现如图3.1所示对话框。选择系统默认“零件”,子类型“实体”方式,“名称”栏中输入“canshuhuachilun”,同时注意关闭“使用缺省模板”。选择公制模板mmns-part-solid,如图3.2所示,然后单击

38、“确定”。(2)创建齿轮程序。选择菜单栏“工具/程序”命令,出现如图3.3所示对话框。单击“编辑设计”,依次添加齿轮设计参数及初始值,添加完毕单击“确定”。选择工具菜单“工具/程序”命令,出现如图3.4信息窗口,在其中输入程序如下:图3.4 信息窗口图3.3 添加参数(3)添加齿轮四个圆的关系式。1)选择“插入/模型基准/草绘”特征工具,或单击工具栏草绘命令,出现如图3.5所示对话框。选择FRONT基准平面为草绘平面,系统自动捕捉到与其垂直的RIGHT基准平面为其参考平面。单击“草绘”确认,进入二维草绘模式如图3.6所示。图3.6 草绘界面图3.5 草绘对话框2)草绘截面。首先选择工具菜单栏“

39、草绘/圆”或单击“草绘器”工具栏上的圆命令,任意草绘4个同心圆,完成单击确认,如图3.7。图3.7 草绘圆3)选择工具菜单“工具/关系”命令,出现如图3.8信息窗口,选择草绘的圆,在“关系”中输入四个圆的关系式如下:图3.8 关系对话框选择,在弹出对话框选“当前值”,重生成后如图3.9 图3.9 再生圆 4)单击,在的对照下新建笛卡尔坐标系如图3.10,再如图3.11在关系界面下编辑对应关系为,并且选取“再生”。图3.10 新建坐标系图3.11 编辑坐标系图(4)创建齿轮齿廓过渡曲线特征。1)单击工具栏的基准曲线命令,选择新建的坐标系,出现如图所示菜单,如图3.14选择“从方程”建立渐开线,然

40、后单击“确定”图3.15确定。 图3.12创建曲线 图3.13 笛卡儿坐标系 图3.14输入方程 图3.15 确定图3.16 记事本2)单击“笛卡尔”坐标系,出现如图3.16所示记事本,在记事本点划线下方,输入过渡曲线方程以参数方程形式表示,t为proe的默认变量,取值范围0-1,常量PI为圆周率,渐开线以X-Y直角坐标系建立,Z 轴取值为0。渐开线方程输入完毕,单击记事本“文件/保存”。最后单击曲线对话框“确定”按钮,生成如图3.17所示过渡曲线。图3.17 过渡曲线程序为:=t*xc/r*tan(90-t)+yc/rv=* 180/ PI=atan(r*-yc)/xc)x=(r-xc-*c

41、os()*cos(v)+(xc*tan()+*sin()*sin(v)-rf*cos(180/zn)y=(r-xc-*cos()*sin(v)-(xc*tan()+ *sin()*cos(v)z=0(4)创建齿轮齿廓渐开线特征。(方法步骤同创建齿轮齿廓过渡曲线特征,不再详述)=t/r*(yc-y0+xc*tan(90-t)+2*han/sin(2*t)+1/r*(y0-2*han/sin(2*t)v=*180/PIx=(r-0.5*(r*-y0)*sin(2*t)*cos(v)+(r*-y0)*cos(t)*cos(t)*sin(v)-rf*cos(180/zn)y=(r-0.5*(r*-y0

42、)*sin(2*t)*sin(v)-(r*-y0)*cos(t)*cos(t)*cos(v)z=0(5)创建封闭环在草绘界面下用选取图元,再用对渐开线及过度曲线进行动态修剪。如图3.18所示。 (a) 选取“线” (b) 修剪后结果图3.18 创间封闭环并修建修剪完后,选取创建中心线如图3.19,选取对渐开线与过渡曲线部分进行对称。图320 镜像图3.19 建立中心线图3.21 创建基准轴(4)创建齿轮齿廓螺旋线特征。(方法步骤同创建齿轮齿廓过渡曲线特征,不再详述)程序为r=d/2L=r/tan()x=r*cos(t*B/L*180/pi) y=r*sin(t*B/L*180/pi) z=t*

43、B(5)进行恒定剖面的扫描1)创建基准轴。单击工具栏的基准轴工具, 在工作区按住Ctrl键,选择RIGHT和TOP基准平面,基准轴的约束类型为“穿过”两个相交基面,单击“确定”完成创建如3.23所示。1)在下,选择参照3.22轨迹中选基准轴与螺旋线图3.23X轨迹,选项恒定剖面图3.24,界面的选取封闭环图3.25,点击完成, 形成如图3.26图形。图3.23 选基准轴与螺旋线图3.22 选取参照图3.26 实体生成 图3.24 恒定剖面 图图3.25 选取截面图3.27 按轴阵列(6)对生成的图像进行阵列1)选取轴选中心轴按轴阵列如图3.27界面显示图3.28,确定后完成结果如图3.29。

44、图329 阵列结果 图3.28 阵列示意图 图3.30 草绘2)编辑阵列在关系中输入关系式选择“再生”后得到齿轮的实体模型如图3.30(7)绘制齿根圆实体部分。用旋转功能进行根圆的绘制,草绘如图3.31,确定后生成旋转如图3.32所示。图3.32 旋转生成 图3.31 草绘(8)选择再生模型 ,在菜单管理器中点击输入如3.33,改变齿轮的参数如图3.34获得不同的齿轮参数,确定完成再生。图3.34 选取参数 图3.33 重输参数3.4 参数化问题分析在整个绘制中,本次设计从齿轮的整个PROE理论为依据,大量运用其绘制曲线的功能。根据本次设计数据改变了推倒的滚动角范围,才生成了封闭曲线。推导未发

45、现漏洞,只能是在计算时或者依据以前的资料有部分出入,才导致此种情况。1.渐开线滚动角范围为取时,图形为图所示,两曲线未交上。(如图3.35)将渐开线的范围变化为时,如图所示,两曲线交上。(如图3.36)图 3.35 未相交图 3.36 相交图 3.37 相交2.改变的值也可以达到效果。3.标准以加工出的齿轮数据之间的值不满足对应的关系。4 其他零件的设计建模4.1 轴在proe参数中调出齿轮参数,根据此设计轴。表 4-1 齿轮参数分度圆齿根圆齿宽中心距小齿轮3.2723.2681462大齿轮117.804114.80413图4.1 齿轮轴2.轴承图4.2 轴4.2 轴承轴承:由于小齿轮的尺寸过

46、小因此采用了滚针轴承,选取轴承内径为7 mm,外径为13 mm,宽度为4 mm,并且在轴承库中调用,改完尺寸后直接生成。表 4-2 轴承的选取结果 (单位:mm)型号内径外径宽度轴承一MF137ZZ7134轴承二7202AC153511图4.3 7209A轴承实体图7202AC4.3 端盖(根据机械设计课程设计手册,选取凸缘式端盖,具体的尺寸数据如下表)表 4-3 端盖尺寸表参数序号名称及符号具体取值或计算数值大齿轮端盖小齿轮端盖1螺钉直径取6mm,数目n=427350284654357.2687由结构决定88059866103513 图4.4 端盖4.4 箱体具体尺寸见下表箱体的主要结构尺寸

47、表 4-4 箱体的主要结构尺寸名称符号减速器的尺寸关系箱体具体取值箱座壁厚 0.025a+188箱盖壁厚 0.025a+18 8箱盖凸缘厚度 b1 1.5 12箱座凸缘厚度 b 1.5 12箱座底凸缘厚度 b2 2.5 20地脚螺钉直径 df 0.036a+1216地脚螺钉数目 n 当 a250时 4 轴承旁连接螺栓直径 0.75df 12盖与座连接螺栓直径 d2 (0.50.6)df 8轴承端盖螺钉直径 d3 (0.40.5)df8视空盖螺钉直径 d4(0.30.4)df6定位销直径 d (0.70.8)df12df、d1、d2至外箱壁距离C1 查表11-2 22df、d2至凸缘边缘距离 C

48、2同上20轴承旁凸台直径 R1 C220凸台高度h根据低速级轴承外径确定外箱壁至轴承座端面距离 L1 C1+C2+(510)47铸造过渡尺寸 x, y 查表1-38 R=5大齿轮顶圆与内箱壁距离 1 1.2 10齿轮端面与内箱壁距离2 10箱盖、箱座肋厚m1,mm1=0.85;m=0.858.5轴承端盖外径 D2 D2=(55.5)d3轴承旁连接螺栓距离 S SD2根据上述尺寸,绘制箱体实体图,箱座图如下:图4.4 箱座视图1图4.4箱座视图24.5 箱盖箱盖图如下:图4.5 箱盖实体图2图4.5 箱盖实体图1注:其余零件的绘制不再说,基本从标准件库中选取零件,或用上述方法绘制。 5 减速器的

49、装配总成在Proe的组件模式下完成减速器的装配过程,首先要安装各个轴上的分装,然后在以各个轴的分装作为元件进行装配。在装配的过程中,各部件是靠联接关系装配在一起的,在装配某个零部件时根据产品的结构和功能确定它是固定件还是活动件。5.1 零件装配的基本流程1)进入装配设计环境2)在零件装配设计环境下,从插入零部库中插入第一个零件到工作区中,该零件称为基础零件,系统对第一个插入的零件自动添加一个固定装配关系。3))根据装配关系,逐个插入其它零件,并在插入零件与当前装配件上,选择相应的装配关系命令进行装配。 4))完成所有零件的装配,进行干涉检查,确认无误后,保存文件。以上步骤为自下而上的装配方法。在装配过程中可以根据需要随时进行新零件的设计,新设计的零件在形状和尺寸上可以与己有的零件和部件保持相关和协调,这个过程便体现自上而下的设计,因此两种方法不是独立不相干的,它们在装配设计中是融合使用的。5.2 装配过程中常用的配合方法1)重合配合:该配合将会使所选择的面、边线及基准面(它们之间的相互组合或与单一顶点组合)重合在一条无限长的直线上,或将两个点重合。定位两个顶点使 它们彼此接触。2)轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论