![基于MATLAB的信号去噪研究(精)_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-5/10/40f243ff-898d-4b14-8d48-3497898c9db9/40f243ff-898d-4b14-8d48-3497898c9db91.gif)
![基于MATLAB的信号去噪研究(精)_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-5/10/40f243ff-898d-4b14-8d48-3497898c9db9/40f243ff-898d-4b14-8d48-3497898c9db92.gif)
![基于MATLAB的信号去噪研究(精)_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-5/10/40f243ff-898d-4b14-8d48-3497898c9db9/40f243ff-898d-4b14-8d48-3497898c9db93.gif)
![基于MATLAB的信号去噪研究(精)_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-5/10/40f243ff-898d-4b14-8d48-3497898c9db9/40f243ff-898d-4b14-8d48-3497898c9db94.gif)
![基于MATLAB的信号去噪研究(精)_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-5/10/40f243ff-898d-4b14-8d48-3497898c9db9/40f243ff-898d-4b14-8d48-3497898c9db95.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2009届学生毕业设计(论文)材料 (四)学 生 毕 业 设 计(论 文)课题名称姓 名 学 号 院 系 专 业 指导教师基于MATLAB 的信号去噪研究陈文051220206 物电系电子信息工程蒋练军 教授2009年 5月 25日湖南城市学院本科毕业设计(论文)诚信声明本人郑重声明:所呈交的本科毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。本科毕业
2、设计(论文)作者签名: 二 年 月 日I目录摘要 1关键词 1Abstract 2Key Word2引言 31. 小波去噪原理分析41.1 小波去噪原理41.2 小波去噪步骤52. 阈值的选取与量化52.1 软阈值和硬阈值52.2 阈值的几种形式62.3 阀值的选取73. 小波消噪的MATLAB 实现 73.1 小波去噪函数集合73.2 小波去噪验证仿真84. 小波去噪的MATLAB 仿真对比试验10结语 13参考文献13致谢 14II基于 MATLAB 的信号去噪研究陈文(湖南城市学院物理与电信工程系益阳413000)摘要:小波分析理论是一种新兴的信号处理理论,它在时间上和频率上都有很好的局
3、部性,这使得小波分析非常适合于时-频分析,借助时- 频局部分析特性,小波分析理论已经成为信号去噪中的一种重要的工具。利用小波方法去噪,是小波 分析应用于实际的重要方面。小波去噪的关键是如何选择阈值和如何利用阈值来 处理小波系数,通过对小波阈值化去噪的原理介绍,运用MATLAB 中的小波工具箱,对一个含噪信号进行阈值去噪,实例验证理论的实际效果,证实了理论的可 靠性。本文简述了几种小波去噪方法,其中的阈值去噪的方法是一种实现简单、 效果较好的小波去噪方法。 关键词:小波变化滤波 去噪1The Study of De-noising Based on the MATLAB Signal Chen
4、Wen(Department of Physics and Telecommunication Engineering , Hunan City University, Yi YangHunan, 413000,china)Abstract: The wavelet analysis theory is a new signal processing theory. It has a very good topicality in time and frequency, which makes the wavelet analysis very suitable for the time -
5、frequency analysis. With the time - frequency?s local analysis characteristics, the wavelet analysis theory has become an important tool in the signal de-noising. Using wavelet methods in de-noising, is an important aspect in the application of wavelet analysis. The key of wavelet de-noising is how
6、to choose a threshold and how to use thresholds to deal with wavelet coefficients. It confirms the reliability of the theory through the wavelet threshold de-noising principle, the use of the wavelet toolbox in MATLAB, carrying on threshold de-noising for a signal with noise and actual results of th
7、e example confirmation theory. This paper has summarized several methods about the wavelet de-noising, in which the threshold de-noising is a simple, effective method of wavelet de-noising.Key Word: Wavelet change Filtering Denoising2引言小波变换的概念是由法国从事石油信号处理的工程师J.Morlet在 1974年首先提出的,I.Daubechies1的小波十讲对小
8、波的普及起了重要的推动作用。现在,它已经在科技信息产业领域取得了令人瞩目的成就。小波分析的应用领域十分广泛 234 。在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在图象处理方面的图象压缩、分类、识别与诊断,去污等。在医学成像方面的减少 B 超、CT、核磁共振成像的时间,提高分辨率等。在实际的计算机控制系统中,采样信号不可避免的受到各种噪声和干扰的污染,使得由辨识采样信号得到的系统模型存在偏差而妨碍了系统控制精度的提高。通信信号去噪工作原理是利用噪声和信号在频域上分布的不同来进行的。在传统的基于傅氏变换的信号去
9、噪方法中,总是使得信号和噪声的频带重叠部分尽可能小,这样在频域通过时不变滤波,就将信号和噪声区分开。但如果两者重叠区域很大时,就无法实现去噪的效果了。Donoho和 Johnstone5提出的小波收缩去噪算法对去除叠加性高斯白噪声非常有效。由小波变换的特性可知,高斯噪声的小波变换仍然是高斯分布的,它均匀分布在频率尺度空间的各部分,而信号由于其带限性,它的小波系数仅仅集中在频率尺度空间上的有限部分。如何从这些受噪声干扰的信号中估计得到“纯净 ”的信号是建立系统高精度模型和实现高性能控制的关键。滤波器去噪是实际应用最广泛的一种方法,但时常在滤除噪声的同时导致了有用信号的失真,它是从纯频域的角度来分
10、析应该消除哪些频率范围内的噪声。1995年 Donoho 和Johnstone提出了小波收缩去噪的技术,他们研究的是在叠加性高斯白噪声环境下检测出真实信号的情况,利用正交小波变换和高斯随机变量的性质对信号的小波分解系数做阈值量化,无失真的还原出真实信号。本文对Donoho -Johnstone的去噪方法做了总结推广,研究了在高斯白噪声情况下选择小波变换的去噪效果,并公式化了实际数据中的几种更复杂的噪声模型;并对Donoho -Johnstone的小波去噪方法在MATLAB 环境下做了较为详尽的研究,验证了小波去噪的可靠性并对比了傅里叶去噪和小波去噪的效果。31. 小波去噪原理分析1.1 小波去
11、噪原理叠加性高斯白噪声是最常见的噪声模型6,受到叠加性高斯白噪声“污染 ”的观测信号可以表示为:yi=fi+ zi i=1,.n., (1.1)其中 yi 为含噪信号,fi 为 “纯净 ”采样信号,zi 为独立同分布的高斯白噪声ziiidN(0,1), 为噪声水平,信号长度为n. 为了从含噪信号yi 中还原出真实信号fi ,可以利用信号和噪声在小波变换下的不同的特性,通过对小波分解系数进行处理来达到信号和噪声分离的目的。在实际工程应用中,有用信号通常表现为低频信号或是一些比较平稳的信号,而噪声信号则通常表现为高频信号,所以我们可以先对含噪信号进行小波分解7(如进行三层分解):=CA+CD+CD
12、221=CA3+CD1+CD2+CD3S=CA1+CD1 (1.2)图 1.1 三层小波分解示意图其中 cAi 为分解的近似部分,为 cDi 分解的细节部分,i=1,2,3,则噪声部分通常包含在cD1, cD2, cD3中,用门限阈值对小波系数进行处理,重构信号即可达到去噪的目的。41.2 小波去噪步骤总结去噪过程,可以分成以下三个步骤:1)对观测数据作小波分解变化8:W0y=W0f+ ?W0z (1.3)其中 y 表示观测数据向量y1 , y2, y , f 是真实信号向量f1 , f2, fn, z是高斯随机向量z1, z2, zn ,其中用到了小波分解变换是线性变换的性质。2)对小波系数
13、W0 作门限阈值处理(根据具体情况可以使用软阈值处理或硬阈值处理,而且可以选择不同的阈值形式,这将在后面作详细讨论),比如选取最著名的阈值形式9:tn=门限阈值处理可以表示为 tn2logn (1.4),可以证明当n 趋于无穷大时使用阈值公式 (4)对小波系数作软阈值处理可以几乎完全去除观测数据中的噪声。3)对处理过的小波系数作逆变换w0 重构信号 10:*- 1f=w0 tnw0d (1.5)- 1即可得到受污染采样信号去噪后的信号。2. 阈值的选取与量化Donoho-Johnstone小波收缩去噪方法的关键步骤是如何选择阈值和如何进行门限阈值处理,在这将作较为详细的讨论。2.1 软阈值和硬
14、阈值在对小波系数作门限阈值处理操作时,可以使用软阈值处理方法或硬阈值处理方法,硬阈值处理只保留较大的小波系数并将较小的小波系数置零: H(w,t)=0,w<tw,w t (2.1)软阈值处理将较小的小波系数置零但对较大的小波系数向零作了收缩:5S ? w-t,w t ? (w,t)=? 0,w<t (2.2)? w+t,w t直观形式见图2.1(图中取t=1)从图上我们可以看出软阈值处理是一种更为平滑的形式,在去噪后能产生更为光滑的结果,而硬阈值处理能够更多的保留真实信号中的尖峰等特征软阈值处理实质上是对小波分解系数作了收缩,从而Donoho-Johnstone将这种去噪技术称之为
15、小波收缩1112。图 2.1 硬阀值和软阀值2.2 阈值的几种形式阈值的选取有多种形式,选取规则都是基于含噪信号模型式(1.1)中信号水平为1的情况,对于噪声水平未知或非白噪声的情况可以在去噪时重新调整得到的阈值。在 MATLAB 中有 4种阈值函数形式13可以选用 :(1)sqtwolog:采用固定的阈值形式,如式(1.4),因为这种阈值形式在软门限阈值处理中能够得到直观意义上很好的去噪效果。(2)minimaxi 采用极大极小原理选择的阈值,和sqtwolog 一样也是一种固定的阈值,它产生一个最小均方误差的极值,计算公式为: ? 0,n 32?t= (2.3)? 0.3936+0.182
16、9*log2n(3) rigrsure:采用史坦的无偏似然估计原理进行阈值选择,首先得到一个给定阈6值的风险估计,选择风险最小的阈值t* 作为最终选择。(4) heursure:选择启发式阈值它是sqtwolog 和 rigrsure 的综合,当信噪比很小时,估计有很大的噪声,这时heursure,采用固定阈值sqtwolog。2.3 阀值的选取阈值化处理的关键问题是选择合适的阈值如果阈值(门限 ) 太小,去噪后的信号仍然有噪声存在;相反,如果太大,重要信号特征将被滤掉,引起偏差。从直观上,对于给定小波系数,噪声越大,阈值就越大。大多数阈值选择过程是针对一组小波系数,即根据本组小波系数的统计特
17、性,计算出一个阈值。Donoho 等提出了一种典型阈值选取方法,从理论上给出并证明阈值与噪声的方差成正比,其大小为:tn= 2logn3. 小波消噪的MATLAB 实现MATLAB 中的小波工具包提供了全面的小波变化及其应用的各种功能,其中小波去噪方面实现Donoho-Johnstone等的去噪算法,而且可以选择使用图形界面操作工具或者去噪函数集合两种形式,图形界面操作工具直观易用,而利用函数集合可以实现更灵活强大的功能。我们利用小波去噪函数集合在中MATLAB 作了一系列实验,充分体会到了小波去噪的强大功能。3.1 小波去噪函数集合下面是几个最为常用的小波去噪函数14:1) x=wnoise
18、(fun,n):产生Donoho-Johnstone设计的6 种用于测试小波去噪效果的典型测试数据,函数根据输入参数fun 的值输出名为“ blocks ” , “ bumps” , “ heavy” , “ doppler或 ”“ ,m“ isqhumaadsch的 ” irp6种函数数据,数”据长度为2n。这6种测试数据在验证和仿真实验时非常有用。2) xd,cxd,lxd=wden(x,tptr,sorh,scal,level,wname):最主要的一维小波去噪函数。其中输入参数为输入需要的信号,tptr为 2.2节中 4种阀值形式,sorh设定为“ s”表示用软门限阀值或硬门限阀值处理
19、。2.2节中说过4 种阈值形式是基于信号水平为 1 的高斯白噪声模型推导得到的,当噪声不是白噪声时,必须7在小波分解的不同层次估计噪声水平,scal= “ on不进行重新估计,e”scal= “ sln只 ”根据第一层小波分解系数估计噪声水平,scal= “ ml在每个不同的小波分解层次估n”计噪声水平,根据scal参数的设定,wden()函数决定最终应用于每一个小波分解层次的阀值函数。最后两个参数level 和 wname表示利用名为wname的小波对信号分解结构cxd,lxd。还有功能更强大的用于一维或二维小波去噪或压缩的函数 wdencmp()。3) thr=thselect(x,tpt
20、r):去噪阀值选择函数。4) y=wthresh(x,sorh,t):对信号x做阀值为t的门限阀值处理。3.2 小波去噪验证仿真实验信号是由wnoise()函数产生的含标准的高斯白噪声信噪比为3 的 heavy sine信号,用wden()函数进行去噪处理1516.1)首先产生一个长度为210点,包含高斯噪声的heavy sine信号及heavy sine含噪信号 , 其噪声标准差为3 , 如图 3.1a及 b所示。2)利用 ,sym8?小波对信号分解,在分解的第5层上,利用软阈值法去噪,结果如图 3.1c 所示3)同样的条件下,利用固定阈值选择算法对信号去噪,结果如图3.1d 所示 8图 3
21、.1 小波去噪验证仿真图( a)为原始信号(b)为含噪信号(c)为软阀值去噪信号(d)为硬阀值去噪信号验证仿真程序如下:x=wnoise(3,10);ind=linspace(0,1,210);subplot(4,1,1);plot(x);title('(a)');x,noisyx=wnoise(3,10,3,210);subplot(4,1,2);plot(noisyx);title('(b)');xd=wden(x,'rigrsure','s','sln',5,'sym8');subplot(4
22、,1,3);plot(xd);title('(c)')xd=wden(x,'sqtwolog','h','sln',5,'sym8');subplot(4,1,4);plot(xd);title('(d)');通过以上的例子,可以看出对原始信号添加噪声后得到含噪信号,利用 MATLAB 中的小波工具箱对含噪信号分别进行软阈值化和硬阈值化去噪处理,得出的去噪结果与原始信号效果非常接近, 由此可以看出利用MATLAB 中的小波变换工具箱对信号进行去噪处理是非常理想的。4. 小波去噪的MATLAB 仿真对
23、比试验选择 MATLAB6.5 中含有噪声的仿真信号noisbloc 作为原始信号,分别使用FFT和小波分析方法对信号进行去噪处理,采用的小波是sym8,分解层数为5,对比结果如图4.1。由图 4.1 可以看出,利用小波分析去噪的结果明显优于Fourier 变换,这是由于Fourier 变换只能在频域范围内表述,对系数进行处理的方法也相对单一,而利用小波对信号进行分解后,可以采用多种计算阈值和处理阈值的方法 . 对信号的噪声成分进行抑制,手段更加灵活。为了更加精确地表示去噪结果,可以计算去噪后信号的信噪比(RSN) 和均方根误差(RMSE)1718 。 10图 4.1 小波去噪和FFT去噪效果
24、对比图a为含噪信号图,b 为软阀值去噪信号图,c为硬阀值去噪图,d 为 FFT去噪图表 4.1 几种方法去噪后的RSN 和 RMSE信号的信噪比越高,原始信号和去噪信号的均方根误差越小,去噪信号就越接近原信号,去噪的效果也就越好。表4.1 给出了 3种方法去噪后信噪比和均方根误差的比较,可以看出,小波分析去噪结果的信噪比和均方根误差指标均优于FFT。11试验程序如下:load noisbloc;x=noisbloc;subplot(2,2,1);plot(x);title('a')xd=wden(x,'rigrsure','s','sln
25、',5,'sym8');subplot(2,2,2);plot(xd);title('b')p1=1/length(x)*norm(x)2;p2=1/length(x)*norm(x-xd)2;snr1=10*log(p1/p2)RMSE1=sqrtm(p2)xd=wden(x,'sqtwolog','h','sln',5,'sym8');subplot(2,2,3);plot(xd);title('c')p1=1/length(x)*norm(x)2;p2=1/length
26、(x)*norm(x-xd)2;snr2=10*log(p1/p2)RMSE2=sqrtm(p2)wc=0.3;N=5;b,a=butter(N,wc);xd=filter(b,a,x);subplot(2,2,4);plot(xd);title('d'); p1=1/length(x)*norm(x)2;p2=1/length(x)*norm(x-xd)2;snr3=10*log(p1/p2)RMSE3=sqrtm(p2)12结语小波去噪是一个正在研究的课题,新的方法在不断地提出。小波变换是一种信号的时频分析方法,它具有多分辨率分析的特点,很适合探测正常信号中夹带的瞬态反常现
27、象并展示其成分,有效区分信号中的突变部分和噪声。因此利用小波变换能有效的对信号进行消噪的同时提取含噪信号。用传统的傅立叶变换分析,显得无能为力,因为傅立叶分析是将信号完全在频率域中进行分析,它不能给出信号在某个时间点的变化情况,使得信号在时间轴上的任何一个突变,都会影响信号的整个频谱。小波变换正广泛的应用于各个领域,MATLAB 给我们提供了一个很方便的工作平台,通过MATLAB 编制程序给定信号的噪声抑制和非平稳信号噪声的消除。通过实例证明:基于小波变换的消噪方法是一种提取有用信号、展示噪声和突变信号的优越方法,具有广阔的实用价值。参考文献1 Delyon B,Juditsky A,Benveniste A.Accuracy Analysis for Wavelet Approximat- ionJ.IEEE Transactions on Neural Networks,1995,(6) :320-350.2 Gregory B Pepus.用Domino 开发 Web 站点 M. 北京 :机械工业出版社, 1998.3 林昱 ,钱昆 . Lotus Domino R5 开发教程M. 北京:电子工业出版社, 2001.4 冯锦峰,惠月. Lotus Domino/Notes R5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度新能源汽车充电桩设备采购合同协议书
- 2024妇女节活动中班(6篇)
- 2025年江西省高三语文2月统一调研联考试卷附答案解析
- 河北省高职单招2024年数学真题仿真卷
- 2025年全球贸易合同样式
- 2025年车载高压空压机组项目提案报告模范
- 2025年铁矿石采选项目立项申请报告模范
- 2025年劳动力输入安全保障协议
- 2025年上饶年终合同样本
- 2025年中外著作权许可使用合同样本
- 华为认证 HCIA-Security 安全 H12-711考试题库(共800多题)
- 员工技能熟练度评价
- 部编新教材人教版七年级上册历史重要知识点归纳
- DB51∕T 2681-2020 预拌混凝土搅拌站废水废浆回收利用技术规程
- 重点时段及节假日前安全检查表
- 道路标线施工技术规程(已执行)
- 给排水管道工程分项、分部、单位工程划分
- 《傻子上学》台词
- 高中英语新课程标准解读 (课堂PPT)
- 石灰石石膏湿法脱硫化学分析方案
- 《数学趣味活动》PPT课件.ppt
评论
0/150
提交评论