选修2-3期望方差练习题_第1页
选修2-3期望方差练习题_第2页
选修2-3期望方差练习题_第3页
选修2-3期望方差练习题_第4页
选修2-3期望方差练习题_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上1某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和,现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立(1)求至少有一种新产品研发成功的概率;(2)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望阿解:记E甲组研发新产品成功,F乙组研发新产品成功由题设知P(E),P(),P(F),P().且事件E与F,E与,与F,与都相互独立(1)记H至少有一种新产品研发成功,则 ,于是P()P()P(),故所求的概率为P(H)1P()1.(2)设企业可获利润为X(万元),

2、则X的可能取值为0,100,120,220.P(X0)P( ),P(X100)P(F),P(X120)P(E),P(X220)P(EF).故所求的X分布列为X0100120220P数学期望为E(X)0100120220140.2现有一游戏装置如图,小球从最上方入口处投入,每次遇到黑色障碍物等可能地向左、右两边落下游戏规则为:若小球最终落入A槽,得10张奖票;若落入B槽,得5张奖票;若落入C槽,得重投一次的机会,但投球的总次数不超过3次(1)求投球一次,小球落入B槽的概率;(2)设玩一次游戏能获得的奖票数为随机变量X,求X的分布列及数学期望解:(1)由题意可知投一次小球,落入B槽的概率为22.(

3、2)落入A槽的概率为2,落入B槽的概率为,落入C槽的概率为2.X的所有可能取值为0,5,10,P(X0)3,P(X5)2,P(X10)2,X的分布列为X0510PE(X)0510.3.在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列及数学期望解:(1)设A表示

4、事件“观众甲选中3号歌手”,B表示事件“观众乙选中3号歌手”,则P(A),P(B).事件A与B相互独立,观众甲选中3号歌手且观众乙未选中3号歌手的概率为P(A)P(A)P() P()1P(B).(2)设C表示事件“观众丙选中3号歌手”,则P(C),X可能的取值为0,1,2,3,且取这些值的概率分别为P(X0)P(),P(X1)P(A)P(B)P(C),P(X2)P(AB)P(AC)P(BC),P(X3)P(ABC),X的分布列为:X0123PX的数学期望E(X)0123.4一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡

5、片(1)求所取3张卡片上的数字完全相同的概率;(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望(注:若三个数a,b,c满足abc,则称b为这三个数的中位数)解:(1)由古典概型中的概率计算公式知所求概率为P.(2)X的所有可能值为1,2,3,且P(X1),P(X2),P(X3),故X的分布列为X123P从而E(X)123.5.已知一个口袋中装有n个红球(n1且nN*)和2个白球,从中有放回地连续摸三次,每次摸出两个球,若两个球颜色不同则为中奖,否则不中奖(1)当n3时,设三次摸球中(每次摸球后放回)中奖的次数为X,求X的分布列;(2)记三次摸球中(每次摸球后放回)恰有两次中奖的

6、概率为P,当n取多少时,P最大?解:(1)当n3时,每次摸出两个球,中奖的概率P.P(X0)C3;P(X1)C2;P(X2)C2;P(X3)C3.X的分布列为X0123P(2)设每次摸球中奖的概率为p,则三次摸球(每次摸球后放回)恰有两次中奖的概率为P(X2)Cp2(1p)3p33p2,0p1,P9p26p3p(3p2),知在上P为增函数,在上P为减函数,当p时,P取得最大值所以p,即n23n20,解得n1或n2.6某市一次全市高中男生身高统计调查数据显示:全市100 000名男生的身高服从正态分布N(168,16)现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于1

7、60 cm和184 cm之间,将测量结果按如下方式分成6组:第1组160,164),第2组164,168),第6组180,184,如图是按上述分组方法得到的频率分布直方图(1)试评估该校高三年级男生在全市高中男生中的平均身高状况;(2)求这50名男生身高在172 cm以上(含172 cm)的人数;(3)在这50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,将该2人中身高排名(从高到低)在全市前130名的人数记为X,求X的数学期望参考数据:若XN(,2),则P(X)0.682 6,P(2X2)0.954 4,P(3X3)0.997 4.解:(1)由频率分布直方图,经过计算得该校高三年级男生平均身高为1621661701741781824168.72,高于全市的平均值168.(2)由频率分布直方图知,后3组频率为(0.020.020.01)40.2,人数为0.25010,即这50名男生身高在172 cm以上(含172 cm)的人数为10.(3)P(16834X16834)0.997 4,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论