版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、多重共线性【实验目的】掌握多重共线性的检验及处理方法【实验内容】建立并检验我国钢材产量预测模型【实验步骤】【例1】表1是19781997年我国钢材产量(万吨)、生铁产量(万吨)、发电量(亿千瓦时)、固定资产投资(亿元)、国内生产总值(亿元)、铁路运输量(万吨)的统计资料。表1我国钢材产量及其它相关经济变量统计资料年份钢材产量丫生铁产量X1发电量X2固定资产投资X3国内生产总值X4铁路运输量X51978220834792566668.7232641101191979249736732820699.3640381118931980271638023006746.945181112791981267
2、034173093638.2148621076731982292035513277805.952951134951983307237383514885.26593511878419843372400137701052.43717112407419853693438441071523.51896413070919864058506444951795.321020213563519874386550349732101.691196314065319884689570454522554.861492814494819894859582058482340.52169091514891990515362
3、38621225341854815068119915638676567753139.032161815289319926697758975394473.762663815762719937716895683956811.353463416266319948428974192819355.354675916309319958980105291007010702.975847816585519969338107231081312185.796788516880319979979115111135613838.9674463169734一、检验多重共线性1.相关系数矩阵检验法利用相关系数可以分析解释
4、变量之间的两两相关情况。在Eviews软件中可以直接计算相关系数矩阵。本例中,在Eviews软件命令窗口中键入:CORX1X2X3X4X5或在包含所有解释变量的数组窗口中点击ViewCorrelations,其结果如图6-1所示。由相关系数矩阵可以看出,解释变量之间的相关系数均为0.8以上,大部分更在0.9以上,即解释变量之间是高度相关的。Group:UHTIILEDVorkfile:UNTITLED:Untitled匚反明已囤PrcK)obgH)回ntN目词Free5ampl曰陆求$5prcCorrelationX1X2X3X4X5X11.DDDD0DD.SS51630969645D.973
5、104口930383八X20.9951831.0000000.95961S0.9696370.945442X30.9696450,95961610000000.9961010.827643X40.973104D.96S63709961011.0000000.847043X50.93039309454420.8276430.6470461.000000V图6-1解释变量间的相关系数矩阵2 .综合统计检验法将丫对所有的解释变量回归,即LSYCX1X2X3X4X5,得到图6-2所示的结果:Equation:UHTITLEDlorkfile;UBTITLED:二.幻叵区Hie/pt口匚Cbjed:伺向
6、七帆淅/rsweEstimetr口后工己51氏atsRe5idiDependentVariable:YMethod:LeastSquaresDte:04/30/12Time:10:52Sample:19761997Includedobservations:20CoefficientStd.Errorl-StatlsticProbC3545394436.69630.813S420.4294X10.0260410.1200640.2169920.S314X2099453601354747.2873800.0000X30.3926760.0854684,5412710,0005X4-00B54360
7、.0.D001X5*0,0059980.00S034*09940190.3371R-sqjared0999098IVI踹ndeperdentvar5153450AdjustedR-squared0.998776B.D.dependentwar2512131S.E,ofregression97,87959Akaikeinfocriterion12,03314Sumsquaredresid108119.8Schwarzcritsrion12.3318GLoglikelihood-1143314Haman-Quinnenter.12.0S145F-statistic3102
8、.411Durbin-Walsonstat1.91S746Prob(F-statistic)0.000000图6-2多元线性回归结果图6-2的结果中,R2和F的值都很大,但T的绝对值都比较小,同时,X4和X5的系数估计值不合理,所以此模型存在多重共线性。3 .辅助回归方程检验当解释变量多于两个且变量之间呈现出较复杂的相关关系时,可以通过建立辅助回归模型来检验多重共线性。本例中,在Eviews软件命令窗口中键入:LSX1CX2X3X4X5LSX2CX1X3X4X5LSX3CX1X2X4X5LSX4CX1X2X3X5LSX5CX1X2X3X4对应的回归Z果如图26所示。Equation:UVTIT
9、LEDTorkfile:UTTITLED:.g回区5已囿Pg则匕出回中比汗马而已Frc«ee我ima也4口re匚占贯5t&s,Resids:DependentVariable:XiMethod:LeastSquaresDate.04/3Q.12Tims:11:00Sample:19781997Includedobservatiors:20CoefficientStd.Errort-StatisticProb.c309.6476933.55410.3310870.7447X20.7B37050.2125553,63748700022X30.5337170.124B514.274
10、81300007X40.0351S90,027765-3.0685650,0076X50.0078840.012B150.0152050.5476R-squared0J98188Meandependentvar6209.400AdjustedR-squared0.995168S.D.dependentvar2718S51S.E.ofregression189.9864Akaikeinfocriterion13,53354Sumsquaredresid535737.7Schwarzcriterion13.7B248Loglikelihood-130.3354Hariran-Quinincrite
11、r.13.58211F-statistic979.3627Durbin-Watsonstat1.322006ProbfF-statisticl0.000000>|图6-3Equstion:nWTITLEDTorkfile:IWT工TLED叵区Vaw|丁口二OhjettPdnh|iVane|Fr已宓句|E<jret曰式H5t曰t$Resid引DdpenderrtVariable:X2Method:LeastSquaresDate04/30/12Time:11:03Sample:107S1997IncludedobEervatiuns:20CoefficientStdErrort-St
12、atisticProb-2170407602.5757-3,61529100025OGOGESe0.1645133,6874870.0022-0.2811230.146607-1.9175213.0T440.0B29760.0226323.6663010.00230.025300000936027041020.0163R-squaradJ997S5h/leandependentvar5869100AdjustedR-squared0.396560S.Ddependentvar2834,91。S.E.ofregression166.2623Akaikeinfocriterion13,27733S
13、umsquaredresid4146J7.5Schwarzcriterion13.52626Loglikehhood-127.7733Hannan-Quinncrlier.13.32592F-statistlc1377.221Durbin-Watsonstat0.995444prob(F-statistic)o.oocooo图6-4Equation:UNTITLEDTorkfile:UNTITLED:.匚|回区卜危网JPr匚cbj已匚tj回1时帆石门0Je与匚曰st|5JRE5idfDependentVariable:X3Method:LeastSquaresDate:04/30/12Time
14、:11:C5Qarriple:19731S97Includedobservations:20CoefficientStdErrort-StatisticProbc550.303512932300.42552B0.6705X110290130.2407144,2748430.0007X2-07D02Q30.365207-1,S175210.0744X401666930.0323517JB22370.0000X5-0.0190440.017333-1.00B7560.2992R-squared0.096965Meandependentvar3942595AdjustedR*squared09961
15、55SD.dependentvar4231.973S.Eofregression262.4132Ahaikeinfocriterion1419004Sumsquaredresid1032910Schwarzcriterion14.43897Loglikelihood-135.0004Hannan-Quinncriter.14,23803F-statistic1231.E51Durbin-Watsanstat1.359304Prob(F-statistic)0.000000图6-5Equation:UNTITLEDVorkfile:UBTITLED:=匚回反陆科IPru/ObjectPrinHM
16、am已Free工cEstim/tTForced%,泉7七$I5DependentVariable:X4Method:LeastSquaresDate:04/30/12Time:11:33Sample:19781997Includedobseivations:20CoefficientStd.Errort-StatisticProb.C5983.32066524410.B9941703826X1-45264511475104-3.0685650.0079X25.5956991.553527366630100023X345484600.S2S6827,392237ODOOOX5-0.0521010
17、.093614-0.5565520.5860R-squared0997006Meandependentvar22353.60AdjustedR-squared0.998208SD.dependentvar2237003SEofregression1377.496Akaikeinfocriterion17,50624Sumsquaredresid23462523Schwaizcriterion17,7551BLoglikelihood-170.0624Hannan-Quinnenter.17,55484F-statistic1248.948Durbin-Watsonstat1.263358Pro
18、bT-statistic)0CiOOOOO图6-6KEquation:UKTITLEDTorkfile:UHTITLED:.,|-X卜iewjproc口印1:日旧rinfc版鹏,回兜如)归stimatg1F口佗匚曰研工工曰七降超弓讨不DependentVanable:X5Method:LeastSquaresDate:04/30J12Time:11:34Sample:19701997Includedobservations:20CoefficientStdErrorbStatisticProb.C68338.486024.37411.3435E0.0000X13.12175050743400.
19、6152050.5476X2129485647885272.7041020,0163X33,9113583.559905-1,09075602892X4-0.3903270.697737-05565520.5860R-squared0977037Meandependentvar139605.0AdjustedR-squared0.970913S.D.dependentvar22050.62SEofregression3760.683Akaikeinfocriterion19,51491Sumsquaredresid2.12E+D8Schwarzcriterion1976384Loglikeli
20、hood-190.1491Hannan-Guinncriter.19.56350F-statistic159,5559Durbin-Watsonsta10549742Prob(F-statistic)0.000000图6-7上述每个回归方程的R2都很大,F检验值都非常显著,方程回归系数的T检验值表明:X1与X5,X2与X3,X3与X2、X5,X4与X5,X5与X1、X3、X4的T检验值较小,这些变量之间可能不相关或相关程度较小。二、利用逐步回归方法处理多重共线性1 .建立基本的一元回归方程根据相关系数和理论分析,钢材产量与生铁产量关联程度最大。所以,设建立的一元回归方程为:Y=:X1;2 .逐步引入其它变量,确定最适合的多元回归方程(回归结果如表2所示)表2逐步回归过程模型CX1X2X3X4X5R2阶段最优Y=f(X1)-567.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四年级《书法》教案
- 2018年7月2日上午陕西公务员考试面试真题(西安行政系统)
- 2024届中考数学一次函数天天练(4)及答案
- 2024年项目计划合同部安全生产责任书
- 2024年工伤私了赔偿协议书
- 2024年停薪留职协议合同范本
- 2024年抖音直播服务合同模板
- 上海市财务管理模拟27
- 2006年7月7日公务员面试真题
- 2024年借款合同之监督
- 航空航天概论(课堂PPT)
- 高速铁路桥梁救援疏散通道施工方案
- 国家开放大学《zy银行理论与实务》形成性考核1-4参考答案
- 过街天桥施工方案
- 医疗质量管理与持续改进记录表(全套模板)
- 【已填内容】个人业绩相关信息采集表 含政治表现、最满意、主要特点、不足
- 近五年来教学改革、教学研究成果及其解决的问题--精品课程申报参考
- 口袋妖怪黄版隐藏道具
- excel自动生产排程(至柔Ⅱ) 最新版
- 园林技术专业实训室建设方案
- 小学二年级看图写话练习一(共2页)
评论
0/150
提交评论