大学模式识别考试题及答案详解_第1页
大学模式识别考试题及答案详解_第2页
大学模式识别考试题及答案详解_第3页
大学模式识别考试题及答案详解_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有树_、网。3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。(1)无监督分类(2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)j-1l-l(1)/二巩际'=$应J=2网-河网-

2、如(4) 二6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)(1) (AB,0,1,-01,At0A1,At1A0,BtBA,Bt0,A)(A,0,1,A>0,A>0A,A)(3)(S,ab,S:00S,S-;11S,S:00,S.11,S(4) (丹,0,1,A>01,A>0A1,A>1A0,A)、

3、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。答:(1)分类准则,模式相似性测度,特征量的选择,量纲。(2)证明:d2品卷)=.-访厂国-1)JJ/(2分)(2分)第1页共5页1(1分)(1分)1二-力石曜浦设,有非奇异线性变换:1n1井1井尹嬴£勇二蔡£第二号£弓=去西»mmjrf1m6=痴;1。1-方仪-方'm=力宗至-蜀阳-Q1加一1=GE国书场一百川=兑4二(羽-明时(应-名)=(耳丐)40一弓)二(%一4)5KH尸招一)Ji|r=优_引X%T一舂)二优一可)史丁优一可)=

4、我场吊)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。答:(1)(4分)的绝对值正比于亍到超平面d=。的距离4平面兀的方程可以写成通-叫+1KI-hl式中陶卜柳+小+铲。于是IHII是平面n的单位法矢量,上式可写成W1hl设,是平面了中的任一点,亍是特征空间XN中任一点,点亍到平面71的距离为差矢量(亍一切在日上的投影的绝对值,即4=厢-力卜依-赤第2页共5页阵+吗+1|二告口(口Ml(1-1)上式中利用了衣在平面兀中,故满足方程.”一%同”同式(i-i)的分子为判别函数绝对值,上式表明,d(J)的值口|正比于,到超平面d(i)=O的距离4,一个特征矢量代入判别函

5、数后所得值的绝对值越大表明该特征点距判别界面越远。(4分)d的正(负)反映亍在超平面d二。的正(负)侧两矢量后和由司的数积为(2分)7(?-力)=同犷-部。猴羽显然,当尸和无切夹角小于9时,即£在行指向的那个半空间中,网川>0;反之,当日和。-力夹角大于9时,即,在兄背向的那个半空间中,CQ犒(力)<0。由于陶,故落优-力和帝+%同号。所以,当中在E指向的半空间中时,丽+%>°当?在元背向的半空间中,而亍+W*+1<°。判别函数值的正负表示出特征点位于哪个半空间中,或者换句话说,表示特征点位于界面的哪一侧。五、(12分,每问4分)在目标识别

6、中,假定有农田和装甲车两种类型,类型和类型新分别代表农田和装甲车,它们的先验概率分别为0.8和0.2,损失函数如表1所示。现在做了三次试验,获得三个样本的类概率密度如下:P(力可):0.3,0.1,0.6P(打啊):0.7,0.8,0.3(1) 试用贝叶斯最小误判概率准则判决三个样本各属于哪一个类型;(2) 假定只考虑前两种判决,试用贝叶斯最小风险准则判决三个样本各属于哪一类;(3) 把拒绝判决考虑在内,重新考核三次试验的结果。表1%51%11第3页共5页_3-3解:由题可知:F(Q)=O"闯=03,F(.)7,PR的)7,尸2_1尸每®_2F(马l町)8,尸(马|修)(1

7、) (4分)根据贝叶斯最小误判概率准则知:户"11%)_PF(qI可)P)伉Iq)?=1>-玉13)f,则可以任判;网引电)产,则判为叫;尸&I叼)尸(可),则判为Q;一一)(%厂-)0.3(5-1)4j(2) (4分)由题可知:尸(修)4-遍07(4-1)7尸®J则PO1I%)7,判为g;色)J产每1的)7,判为必;可)JF区)亍,判为Q;(3) (4分)对于两类问题,对于样本X,假设尸")已知,有出(%IX)=为%附)?(的|X)+为与)网*Ix)=_"叫I研)产。|研)户(研)+4(4I组尸aI%产则对于第一个样本,zj、5x0,21

8、-、4x0.21n/I、2x0,21底(%|幻=,R他lJ)=,、风&I工)=口、尸尸(工)尸。),则拒判;R(%I方二£(里a=1030.78尸,品泌二0.59丽2.19而4(鼻11)=出$1工)=0.24尸,则拒判;0.51尸,拒判。1 .监督学习与非监督学习的区别:监督学习方法用来对数据实现分类,分类规则通过训练获得。该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。(实例:道路图)就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,第4页共5页进行分类器设计,然后用所设计的分类器对道路图像进行分割。使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。2 .动态聚类是指对当前聚类通过迭代运算改善聚类;分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。3 .线性分类器三种最优准则:Fisher准则:根据两类样本一般类内密集,类间分离的特点,寻找线性分类器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。该种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。感知准则函数:准

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论