版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一讲将尽饮马问题).CH学习要点与方法点拨一、主要内容(1)将军饮马问题的概念。(2)将军饮马问题在坐标系、一次函数、三角形、正方形中的应用。(3)将军饮马问题与勾股定理。二、本章重点掌握将军饮马问题的概念和解题思路,能解决将军饮马问题和一次函数、坐标系、几何图形和勾股定理等的综合习题。*课前预习轴对称的性质与作法;一次函数的性质;勾股定理的性质;三角形、矩形、正方形的性质;三角形的三边关系、平移的性质.喊0a模块精讲、将军饮马问题的概念和基本思路起源:古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦。有一天,有位将军不远千里专程前来向海伦求教一个百思不得其解的问题:如图,有一位将军从位于
2、A点的军营,返回位于B点的家中,途中需要到达一条小河MN力,让马去河里喝水。那么,该如何选择路径,才能使将军回家的过程中,走过的路程最短?精通数理的海彳稍加思索,便作了完善的回答.这个问题后来被人们称作“将军饮马”问题。初一看,这个问题好像没有什么思路,那我们先把问题的概念转换一下。这个问题中A点和B点在河MN的同一侧,那么,如果A点和B点在河MN的不同侧呢?这时我们好像有一点眉目了,我们要利用的定理就是:两点之间直线最短.先找线路再找点。那我们再回到最开始时的问题,是不是有了启发呢?思路:为了找线路,可以利用轴对称的原理.先做对称.再转化成三角形的三边关系。例1,如图,一匹马从S点出发,先去
3、河OP边喝水,再去草地OQ吃草,然后再回到S点.该如何选择线路,使得经过的总路程最短?K第一讲吴老师FOREST3例1图例2图二、将军饮马与坐标系例2,已知A(2,3)、B(3,2)制是*轴上的一个动点,N是y轴上的一个动点,求AN+NM+BM的最小值,并求出此时MN的坐标。思路:作对称两段折线一作一次对称一转化折线三段折线一作两次对称一转化折线连线段一最小值例3,已知A(-3,4)、B(-2,5)、M(0,m)、N(0,m+D,求BM+MN+AN最小值,并求此时对应的m的值。运用平移的性质例4,已知A(4,1)、B(3,-2),试在x轴上找一点C,是|ACBC|最大,求出点C的坐标和这个最大
4、值。构造三角形,运用三角形的边长关系三、将军饮马问题解题思路的归纳学习了几个常见的例子,我们再来整理一下思路。首先明白几个概念,动点、定点、对称点。动点一般就是题目中的所求点,即那个不定的点。定点即为题目中固定的点。对称的点,作图所得的点,需要连线的点。1。怎么对称,作谁的对称?简单说所有题目需要作对称的点,都是题目的定点。或者说只有定点才可以去作对称的。(不确定的点作对称式没有意义的)那么作谁的对称点?首先要明确关于对称的对象肯定是一条线,而不是一个点。那么是哪一条线?一般而言都是动点所在直线。2 .对称完以后和谁连接?一句话:和另外一个顶点相连。绝对不能和一个动点相连。明确一个概念:定点的
5、对称点也是一个定点。3 .所求点怎么确定?首先一定要明白,所求点最后反应在图上一定是个交点。实际就是我们所画直线和已知直线的交点。4 。将军饮马一定是求最短距离吗?肯定不是。或者说求最短距离是将军饮马中的最简单一类题目.根据将军饮马的基本模型可以拓展出很多题型。根本原因是因为在作轴对称过程中不但是作了点的对称,还作了边长和角度的对称!或者说边长和角度的对称才是最关键。K第一讲吴老师FOREST3四、将军饮马与勾股定理例5,如图,将军的军营在A处,与河岸的距离OA=4km将军白家在B处.且QA=7km,QB=8km他下班回家的路上先把马牵到小河边去饮水,然后再回到家中,求他下班回家要走的最短路程
6、。在OQ±取点4,求AA+AA+A2B的最小值。例7,/AOB=45°,P是/AOB内一点,PO=10,Q、R分别是OAOB上的动点,求PQRW长的最小值。五、三角形、正方形中的将军饮马例8,如图,在等边ABC中,AB=6,ADLBC,E是AC上的一点,M是AD上的一点,且AE=2,例9,如图,在锐角ABC中,AB=42,ZBAC=45°,/BAC的平分线交BC于点D,MN分别是AD和AB上的动点,则BM+MNJ最小值是.例10,如图,正方形ABCM边长为8,M在DC上,且DMk2,N是AC上的一动点,DWMN41最小值为例10图例11图K第一讲吴老师FOREST
7、3例11,在边长为2cm的正方形ABCM,点Q为BC边的中点,点P为对角线AC上一动点,连接PBPQ,则4PBQ周长的最小值为cm例12,一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设OAAB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点坐标.P(0,5)、Q(5,1)。现在需要在河上架一座桥,(桥必须垂直于河岸),来沟通P、Q两地,求MAB桥的端点BC的坐标,使得从P地到Q地的路程最短。总结:将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼)。所谓轴对称是工具,即这
8、类问题最常用的做法就是作轴对称。而最短距离是题眼,也就意味着归类这类的题目的理由。比如题目经常会出现“线段a+b的最小值"这样的条件或者问题。一旦出现可以快速联想到将军问题,然后利用轴对称解题。,>*iI义学习效果能将实际问题中的“地点”、“河”、"草地”抽象为数学中的“点”、"线”,把最短路径问题抽象为数学中的线段和最小问题,能利用轴对称将处在直线同侧的两点,变为两点处在直线的异侧,能利用平移将两条线段拼接在一起,从而转化为“两点之间,线段最短”问题,能通过逻辑推理证明所求距离最短,在探索问题的过程中,体会轴对称、平移的作用,体会感悟转化的数学思想。K第一
9、讲吴老师FOREST3课后巩固习题,AC+BC1,已知A(1,4),B(1,1),在x轴上找一点C,使AC+BCt小。则C点的坐标是的最小值是。2,已知A(1,3),B(-3,1),M是x轴上一动点,N是y轴上一动点,则当AN+NM+MB小时,M的坐标是3,已知A(-4,4),B(-1,3),M(0,m),N(0,m+。,当BM+MN+AN小时,点M的坐标是最小值是4,已知A(4,5),B(2,-2),在x轴上找一点最大值是.C,则当|ACBC|最大时,点C的坐标是5,到一点如图,点A,B位于直线l的同侧,到直线lM是am+bM1短,则最短距离是的距离AC=10,BD=30,且CD=30,在直
10、线l上找6,如图,ZAOB=45°的周长的最小值为直线lO题6图,点P在/AOB内,且OP=3,点M,N分别为射线OAOB上的动点,则4PMN7,如图,/AOB=40°,点P,Q都在/AOBJ,/AOP=/BOQ=10°,且OP=OQ=6,作点P关于题7图题8图8,如图,ZAOB=60°,点P,Q都在/AOB,/AOP=/BOQ=15°,且OP=8,OQ=6.在射线OAOB上分别存在点MN,是PM+MN+NQ值最小,则最小值是。9,如图,ABC中,AB=2,/BAC=30,若在ACAB上各取一点MN,使BM+MN勺值最小,则这个最小值是多少?K第一讲吴老师FOREST3题9图例10图10,如图所示,正方形ABC曲面积为12,ABE是等边三角形,点E在正方形ABCDJ,在又角线AC上有一点巳使PD+PE的和最小,则这个最小值为.11,如图,若四边形ABCD是菱形,AB=10cm,/ABC=45,E为边BC上的一个动点,P为BD上的一个动点,求PC+PE的最小值.12,如图,在锐角ABC中,AB=4,A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国婴幼儿配方奶粉市场产销量预测及未来发展策略分析报告
- 2024-2030年中国地鳖虫养殖项目可行性研究报告
- 2024-2030年中国变色纱行业市场运营模式及未来发展动向预测报告
- 2024年个人房屋买卖合同(含附件)
- 2024-2030年中国压电晶体行业未来市场容量及投资建议分析报告
- 2024-2030年中国卤业食品产业未来发展趋势及投资策略分析报告
- 2024-2030年中国半导体制冷器件融资商业计划书
- 2024-2030年中国医疗废弃物处理行业现状分析及投资战略研究报告版
- 2024年工程建设投资与结算合同
- 2024-2030年中国净菜加工行业销售模式及投资潜力研究报告版
- 大学生生涯规划与职业发展智慧树知到期末考试答案2024年
- 消毒供应室护理查房
- 消防安全与建筑设计的结合
- 室内维修方案
- 小学信息技术课堂与学科教学逆向融合管见 论文
- 军士生生涯规划
- 短波治疗仪的
- 北师大版数学三年级上册全册分层作业设计含答案
- abs的造粒工艺要求
- 2024年山东福瑞达医药集团有限公司招聘笔试参考题库含答案解析
- 认知障碍人员培训课件
评论
0/150
提交评论