




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二局部 工质的热力性质六 热力学函数的一般关系式由热力学根本定律引出的一些根本热力学状态函数如内能、熵及其为某一研究方便而设的组合函数如焓、自由能、自由焓等许多都是不可测量,必须将它们与可测量如压力、体积、温度等联系起来,否那么我们将得不到实际的结果,解决不了诸如上一章讲的最大功计算等一些具体的问题。这就需要开展热力学的数学理论以将热力学根本定律应用到各种具体问题中去。热力学函数一般关系式全微分性质+根本热力学关系式6.1 状态函数的数学特性对于状态参数,当我们强调它们与独立变量的函数关系时,常称它们为状态函数。从数学上说,状态函数必定具有全微分性质。这一数学特性十分重要,利用它可导出一系列
2、很有实用价值的热力学关系式。下面我们扼要介绍全微分的一些根本定理。设函数具有全微分性质 6-1那么必然有1 互易关系 令式6-1中 , 那么 6-2互易关系与等价。它不仅是全微分的必要条件,而且是充分条件。因此,可反过来检验某一物理量是否具有全微分。2 循环关系当保持不变,即时,由式6-1,得 那么 故有 6-3此式的功能是:假设能直接求得两个偏导数,便可确定第三个偏导数。结果也很容易记忆,只需将三个变量依上、下、外次序,即循环就行了。3 变换关系将式6-1用于某第四个变量不变的情况,可有两边同除以,得 6-4式中:是函数对的偏导数;是以为独立变量时,函数对的偏导数。上面的关系可用于它们之间的
3、变换。这一关系式对于热力学公式的推导十分重要。4 链式关系按照函数求导法那么,可有下述关系: 6-5 6-5a这是在同一参数如保持不变时,一些参数循环求导所得偏导数间的关系。假设将关系式中每个偏导数视为链的一环,那么链式关系的环数可随所涉及参数的个数而增减。以上这些关系式都是针对二元函数的,即以具有两个独立状态参数的简单系统为背景。但对具有两个以上独立参数的系统即多元状态函数,其也有推广价值。例题6-1 理想气体状态方程为,试检验是否有全微分。解 由状态方程得 ,故有 于是 , 而 二者相等,可见有全微分,即其为状态函数。6.2 根本热力学关系式 根本热力学关系式为简单计,以下推导全部采用比参
4、数。由热力学第一定律,得 3 -18d对简单可压缩系统,假设过程可逆,那么,故 而由热力学第二定律 4-14b二式联立,最后得 6-6式6-6表达了热力学根本定律对系统状态参数变化的限制,是导出其它热力学关系式的根本依据,称为根本热力学关系式。需要指出的是:虽然式6-6是从可逆变化推导而来,但因为是状态函数的变化,它只与变化前后的状态有关,而与实际过程的可逆与否无关,所以对于不可逆变化仍然适用。但假设作为能量平衡方程,它只适用于可逆过程。由焓的定义 得 将式6-6代入上式,可得 6-7同样,由自由能的定义 可得 6-8由自由焓的定义 可得 6-9以上式6-76-9为根本热力学关系式用组合参数表
5、达的形式,故式6-66-9可统称为根本热力学关系式。 特性函数根本热力学关系式6-66-9分别为以特定参数为独立变量的状态函数、的全微分表达式。这些函数有一个很重要的性质,就是它们的偏导数各给出一个状态函数。对于函数,将其全微分解析式 与式6-6作比照,即得 6-10 6-11同样,由于式6-7是函数的全微分,那么有 6-12 6-13式6-8是函数的全微分,有 6-14 6-15式6-9是函数的全微分,有 6-16 6-17正因为如此,只需知道上述函数中的任意一个函数,就可确定出所有的状态函数。如,那么由式6-14可得;由式6-15可得即状态方程;由自由能的定义可得 由焓的定义可得 由自由焓
6、的定义可得 由此可见,假设状态函数的独立参数选择适当,那么可由这个函数及其偏导数得到所有的状态函数,从而将工质的平衡性质完全确定。这样的函数称为特性函数。特性函数包含了系统平衡状态的所有信息,它的自变量是特定的。一经变换虽然还是状态函数,但由于信息丧失而不再是特性函数了,这一点需特别注意。除了上面已给出的、这四个特性函数,还可通过根本热力学关系式寻找其它的特性函数。如将式6-6写成 6-18那么可知 也是特性函数;将式6-7写成 6-19那么可知 也是特性函数,等等。特性函数为联系各热力学函数的枢纽。在许多实际问题中,常采用或这些可测量作独立变量,所以和是两个最重要的特性函数。 麦克斯韦关系由
7、于根本热力学关系式6-66-9是各特性函数的全微分表达式,故可对它们应用互易关系式6-2,因此可得 6-20 6-21 6-22 6-23这四个关系式称为麦克斯韦关系。借助它们可将包含不可测量熵的关系式代换成用可测量、表达的关系式。6.3 热系数状态函数的某些偏导数具有明确的物理意义,能表征工质的一定的热力性质,且可由实验测定,因而成为研究工质热力性质的重要数据,称为热系数。常用的热系数有:热膨胀系数、定温压缩系数、绝热压缩系数、压力温度系数、定容比热、定压比热和绝热节流系数等。1. 热膨胀系数 6-24热膨胀系数表征物质在定压下的体积随温度变化的性质,单位为。2. 定温压缩系数 6-25定温
8、压缩系数表征物质在恒定温度下的体积随压力变化的性质。由于所有物质的均为负值,故在定义式中引入负号,而使为正值。其单位为。3. 压力温度系数 6-26压力温度系数表征物质在定容下的压力随温度变化的性质,单位为。由微分的循环关系式6-3,有 因而,上面的三个热系数之间有如下关系 6-27显然,如果有了工质的状态方程,就可计算出这三个热系数。反之,如果由实验测出这些热系数数据,就可积分得到状态方程式。4. 绝热压缩系数 6-28绝热压缩系数表征工质在可逆绝热定熵变化中体积随压力变化的性质,单位为。5. 定容比热 6-29定容比热表征物质在定容下的吸收热量的能力,单位为。根据热力学第一定律解析式 3-
9、18d对简单可压缩系统,定容下的体积功,故,因而 6-306. 定压比热 6-31定压比热表征物质在定压下的吸收热量的能力,单位为。对简单可压缩系统,定压下的体积功,故由式3-18d,因而 6-32可直接采用式6-30和式6-32作为定容比热和定压比热的定义式。这样能更清楚地说明和是状态函数的偏导数,是热系数。此外,在物理意义上,可说明它们对状态函数内能和焓的研究与计算起着重要作用,而不仅仅是计算热量。7. 绝热节流系数 6-33绝热节流系数又称焦耳汤姆逊系数表征物质绝热节流过程的温度效应。的数据可通过焦耳汤姆逊实验测定,并可用以导出工质的状态方程式。因此,在工质热力性质的研究中,它是一个很重
10、要的热系数。例题6-2 水银的体膨胀系数、定温压缩系数,试计算液态水银在定容下温度由升高到时的压力增加。解 由式6-26和式6-27,有 可见,液态水银温度定容升高1度,压力将增加。因此,保持水银的体积不变,容器承受了相当大的压力。例题6-3 假设已从实验数据整理出物质的体膨胀系数和等温压缩系数分别为 , 其中为常数。试推导出该物质的状态方程。解 对于以、为独立变量的状态方程,有 因为 , 所以代入题给的及表达式,得别离变量积分得即此即为该物质的状态方程,其中为积分常数。6.4 熵、内能和焓的一般关系式从理论上讲,可通过根本热力学关系式积分得到特性函数,再由特性函数得到其它状态函数,就可确定出
11、工质的热力性质。但根本热力学关系式以及特性函数有一个很大缺陷,即、及、本身的数值都不能用实验方法直接测定,更谈不上积分求解。因此,必须对根本热力学关系式作些代换,以得到完全用可测量表达的熵、内能和焓的全微分表达式,或称一般关系式。这些表达式以可测参数、中的任一对作独立变量,且式中只包含、和可测的热系数。这样就可利用实验数据积分得到所需的状态函数。 熵的一般关系式 1. 以、为独立变量以、为独立变量,即,那么 A由全微分的链式关系式6-5a及定容比热定义式6-30,并考虑到式6-10,有 B由麦克斯韦关系式6-22,有 C将式B、式C代入式A,得 6-34此称为第一方程。2. 以、为独立变量以、
12、为独立变量,即,那么 A同样,由式6-5a、式6-32和式6-12,有 B由式6-23,有 C将式B、式C代入式A,得 6-35此称为第二方程。3. 以、为独立变量以、为独立变量,即,那么 A由链式关系式6-5a,及上面两个方程推导中的B式,有 B C将式B、式C代入式A,得 6-36此称为第三方程。它也可由式6-34和式6-35联立消去得到。三个方程中,以第二方程最为实用,因定压比热较定容比热易于测定。上述方程推导中,对工质没作任何假定,故它们可用于任何物质,当然也包括理想气体。只要将理想气体的状态方程代入式6-34式6-36,就可得理想气体的熵变计算式。 内能的一般关系式将所得到的三个方程
13、分别代入根本热力学关系式 6-6便可得到三个方程。将第一方程代入式6-6并整理,得 6-37此称为第一方程。它是以、为独立变量的内能的全微分表达式。将第二方程代入式6-6,并将式中的按以、为独立变量作如下展开: 然后整理得 6-38此称为第二方程。它是以、为独立变量的内能的全微分表达式。 将第三方程代入式6-6并整理,得 6-39此称为第三方程。它是以、为独立变量的内能的全微分表达式。在以上三个方程中,第一方程的形式较简单,计算较方便,故使用较广泛。因此,在计算内能变化时,宜选择、为独立变量。 焓的一般关系式与推导方程类似,将各个方程分别代入根本热力学关系式 6-7可得到相应的方程。将第一方程
14、代入式6-7,并将其中的按以、为独立变量展开,整理得 6-40此称为第一方程。它是以、为独立变量的焓的全微分表达式。 将第二方程代入式6-7并整理,得 6-41此称为第二方程。它是以、为独立变量的焓的全微分表达式。 将第三方程代入式6-7并整理,得 6-42此称为第三方程。它是以、为独立变量的焓的全微分表达式。在以上三个方程中,第二方程的形式较简单,计算较简便。因此,在计算焓的变化时,选以、为独立变量的第二方程较为适宜。例题6-4 试验证理想气体的内能与焓均只是温度的函数。 证 1根据内能的一般关系式中对函数的第一方程 6-37和内能的全微分关系式得 对于理想气体,由状态方程 得故即 2 根据
15、焓的一般关系式中对函数的第二方程 6-41和焓的全微分关系式 得对于理想气体,由状态方程 得故即 例题6-5 水由 、经定熵过程增压到。求水的终温及焓的变化量。50时水的,并均可视为定值。解 1求终温由第二方程 6-35及的定义,有 那么 因定熵过程 ,故由上式,得 解得 ,即。 2求焓变由第二方程 6-41及的定义,有 因焓是状态函数,故在初态和终态之间沿任一路径积分,其变化量均相等。为简便计,我们将积分路径分为两段。首先在下定温地由积到,然后在下定压地由积到。那么 从计算结果可以看出,在常用压力范围,水被定熵增压后温度和焓的变化都较小,这是由于它的比容和热膨胀性都较小的缘故。 实质是水的不
16、可压缩性使得功很难施加。6.5 比热的一般关系式上节熵、内能和焓的一般关系式中均含有定压比热或定容比热。两个比热以定压比热的测定较为容易,因此我们要设法找到两个比热之间的关系,从而可由定压比热的实验数据计算出定容比热,以避开实验测定定容比热的困难。此外,我们还希望由定压比热的一般关系式及其实验数据导出状态方程,或在状态方程的情况下,利用定压比热的一般关系式及其在某个压力下的实验值,得到其所有状态的数据,从而大大减少实验量。1 比热与压力、比容的关系对第一方程 6-34应用全微分互易关系式6-2,得 6-43同样,对第二方程 6-35应用全微分互易关系,得 6-44式6-43和式6-44分别建立
17、了定温条件下随压力和随比容的变化与状态方程的关系。这种关系的重要性主要表现在以下几个方面: 假设气体的状态方程,那么可对,譬如式6-44,积分,得 6-45这样,只要知道某一压力下的比热就可得到完整的比热函数。当足够低时,就是理想气体的比热,它只与温度有关。 假设有较精确的比热数据,如,那么可利用式6-44,先求对的一阶偏导数,然后对进行两次积分,并以少量的、实验数据定积分常数,就可确定出状态方程。 假设比热和状态方程均,那么可利用以上关系进行比对。从等式两边的吻合情况判断它们的精确程度。2定压比热与定容比热的关系1. 对绝热过程的分析,通常需要知道定压比热与定容比热的比值。将第三方程 6-3
18、6应用于定熵变化,即,有 将其整理为 对上式的右端应用全微分的循环关系式6-3,得 考虑到定温压缩系数和定熵压缩系数的定义式6-25和式6-28,那么 综上,以表示,得 6-46上式说明:定压比热与定容比热之比等于定温压缩系数与绝热压缩系数之比。2. 由于实验中维持体积不变较难实现,所以通常由的实验数据推算出,因此需要建立的一般关系。将第一方程6-34和第二方程6-35联立,消去,得那么 而的全微分解析式为 比拟以上二式,可得 , 因此 6-47又据循环关系式6-3,有所以 6-48式6-47和式6-48也是热力学中的重要关系式,它们说明: 取决于状态方程,可由状态方程或其热系数求得。 因、恒
19、为正,大于等于零,所以恒大于等于零,也即物质的定压比热恒大于等于定容比热。 由于固体和液体的体膨胀系数与比容都很小,所以,在一般温度下,与相差很小,对于一般工程应用可不加区分。但在很高的温度下,它们之间有明显区别。对于气体,不管什么温度,都须区分。比热比和比热差都可用于与之间的换算。在某些情况下,特别是对于固体和液体,定容比热的测定是很困难的,按上述关系可以由测定的定压比热和其它热系数计算出定容比热。例题6-6 对于遵循范德瓦尔状态方程 和为常数的气体:1导出的表达式;2证明只是温度的函数。解 1根据式6-48及式6-27将状态方程代入各热系数定义式运算得那么 2 根据式6-43由范德瓦尔状态方程得因此即遵循范德瓦尔状态方程的气体的不随变化,它只是温度的函数。6.6 热力学根本函数确实定在热力学中所讨论的各种状态函数称为热力学函数。从这一意义上说,由实验结果得出的状态方程也是一个热力学函数。热力学函数有很多,但最根本的为如下四个:状态方程式 内能函数 焓函数 熵函数 其它热力学函数,如自由能、自由焓等都可由根本函数得出。因定压比热较定容比热容易测定,因此,在实用上,选、为独立变量更为方便。1 熵函数在选、为独立变量时,熵函数可直接由和状态方程积分求得。对第二方程 6-35积分,得 6-49其中,为积分常数。在热力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽修材料供应商合同范本
- 村委会与政府共建协议书
- 鸡蛋采购合同协议书范本
- 离职员工调解协议书范本
- 犯人死亡协议赔偿协议书
- 法人代表不担责协议合同
- 股权委托处理协议书模板
- 混凝土浇捣班组合同范本
- 汽油销售安全协议书范本
- 海外矿山合同协议书范本
- 中科大固体物理课程作业答案88张课件
- 泵用机械密封的设计与制造
- SOAP病历的书写课件
- GB/T 25517.2-2010矿山机械安全标志第2部分:危险图示符号
- 建筑设计防火规范2001修订版
- S-150溶剂油化学品安全技术说明书(江苏华伦)
- 七年级音乐作业
- 江苏建筑施工安全台账(正式版)
- 高中数学必修二 第十章 概率 章末测试(提升)(含答案)
- “三级”安全安全教育记录卡
- 净化磷酸装置水联动试车方案
评论
0/150
提交评论