




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二节第二节一、第二型曲线积分的概念与性质一、第二型曲线积分的概念与性质二、二、 第二型曲线积分的计算法第二型曲线积分的计算法 第二型曲线积分 第十一章 第1页/共19页一、一、 第二型曲线积分的概念与性质第二型曲线积分的概念与性质1. 引例引例: 变力沿曲线所作的功变力沿曲线所作的功.设一质点受如下变力作用设一质点受如下变力作用在在 xOy 平面内从点平面内从点 A 沿光滑曲线弧沿光滑曲线弧 L 移动到点移动到点 B, 求移求移“大化小大化小” “常代变常代变”“近似和近似和” “取极限取极限”变力沿直线所作的功变力沿直线所作的功解决办法解决办法:动过程中变力所作的功动过程中变力所作的功W.
2、第2页/共19页1) “大化大化小小”.2) “常代变常代变”把把L分成分成 n 个小弧段个小弧段,有向小弧段有向小弧段近似代替近似代替, 则有则有所做的功为所做的功为F 沿沿则则用有向线段用有向线段 上任取一点上任取一点在在第3页/共19页3) “近似近似和和”4) “取极限取极限”(其中其中 为为 n 个小弧段的个小弧段的 最大长度最大长度)第4页/共19页2. 定定义义.设设 L 为为xOy 平面内从平面内从 A 到到B 的一条的一条有向光滑有向光滑弧弧,若对若对 L 的任意分割和在局部弧段上任意取点的任意分割和在局部弧段上任意取点, 都存在都存在,在有向曲线弧在有向曲线弧 L 上上对对
3、坐标的曲线积分坐标的曲线积分,则称此极限为函数则称此极限为函数或或第二类曲线积分第二类曲线积分.其中其中,L 称为称为积分弧段积分弧段 或或 积分曲线积分曲线 .称为称为被积函数被积函数 , 在在L 上定义了一个向量函数上定义了一个向量函数极限极限记作记作第5页/共19页若若 为空间曲线弧为空间曲线弧 , 记记称为对称为对 x 的曲线积分的曲线积分;称为对称为对 y 的曲线积分的曲线积分.若记若记, 对坐标的曲线积分也可写作对坐标的曲线积分也可写作类似地类似地, 第6页/共19页第二型曲线积分与曲线第二型曲线积分与曲线 L 的方向有关,对同一曲线,的方向有关,对同一曲线,当方向由当方向由 A
4、到到 B 改为由改为由 B 到到 A 时,每一小曲线段的时,每一小曲线段的方向都改变,从而小曲线段的投影方向都改变,从而小曲线段的投影也随之也随之改变符号,故有改变符号,故有而第一型曲线积分的被积分表达式是函数值与弧长的而第一型曲线积分的被积分表达式是函数值与弧长的乘积,它与曲线乘积,它与曲线 L 的方向无关的方向无关. 这是两类曲线积分的这是两类曲线积分的一个重要区别一个重要区别. 定积分是第二类曲线积分的特例定积分是第二类曲线积分的特例. 对坐标的曲线积分必须注意积分弧段的对坐标的曲线积分必须注意积分弧段的方向方向 !第7页/共19页定理定理:在有向光滑弧在有向光滑弧 L 上有定义且上有定
5、义且L 的参数方程为的参数方程为则曲线积分则曲线积分连续连续,存在存在, 且有且有二、对坐标的曲线积分的计算法二、对坐标的曲线积分的计算法第8页/共19页特殊情形特殊情形.)(:)1(baxxyyL,终终点点为为起起点点为为 .)()(,)(,dxxyxyxQxyxPQdyPdxbaL 则则.)(:)2(dcyyxxL,终点为,终点为起点为起点为 .),()(),(dyyyxQyxyyxPQdyPdxdcL 则则第9页/共19页.,)()()(:)3( 终点终点起点起点推广推广ttztytx 第10页/共19页例例1. 计算计算其中其中L 为沿抛物线为沿抛物线解法解法1 取取 x 为参数为参数
6、, 则则解法解法2 取取 y 为参数为参数, 则则从点从点的一段的一段. 第11页/共19页例例2. 计计算算其中其中 L 为为(1) 半径为半径为 a 圆心在原点的圆心在原点的 上半圆周上半圆周, 方向为逆时针方向方向为逆时针方向;(2) 从点从点 A ( a , 0 )沿沿 x 轴到点轴到点 B ( a , 0 ). 解解: (1) 取取L的参数方程为的参数方程为(2) 取取 L 的方程为的方程为则则则则第12页/共19页例例3. 计算计算其中其中L为为(1) 抛物线抛物线 (2) 抛物线抛物线 (3) 有向折线有向折线 解解: (1) 原式原式(2) 原式原式(3) 原式原式第13页/共19页1. 定义定义2. 性质性质(1) L可分成可分成 k 条有向光滑曲线弧条有向光滑曲线弧(2) L 表示表示 L 的反向弧的反向弧对坐标的曲线积分必须注意对坐标的曲线积分必须注意积分弧段的方向积分弧段的方向!内容小结内容小结第14页/共19页3. 计计算算 对有向光滑弧对有向光滑弧 对有向光滑弧对有向光滑弧第15页/共19页 对空间有向光滑弧对空间有向光滑弧 :第16页/共19页1. 已已知知为折线 ABCOA(如图), 计算提示提示:思考与练习思考与练习
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备出售外贸合同范本
- 借用房租合同范本
- 信息技术服务合同认定流程
- 心理社团心理健康活动策划
- 一年级上册写字课堂活动计划
- 食品安全监督服务承诺措施
- 保险业务流程再造与优化计划
- 2025年二手房买卖合同附加协议手册
- 2025年汽车租赁合同届满退出协议范本
- 2025年网络安全防护服务合同案例
- 大众汽车使用说明书
- (高清版)DZT 0145-2017 土壤地球化学测量规程
- 供热公司安全教育知识
- 高中英语课程纲要
- 《药物设计学》课件
- 随机微分方程
- 道路设施施工现场安全管理基本要求
- 公寓楼改造装修施工方案
- 烟台大学化学化工学院实验室仪器设备搬迁项目
- 安全生产管理组织架构图
- 2022版10kV架空配电线路无人机自主巡检作业导则
评论
0/150
提交评论