湖南大学微积分08-第8讲无穷小量ppt课件_第1页
湖南大学微积分08-第8讲无穷小量ppt课件_第2页
湖南大学微积分08-第8讲无穷小量ppt课件_第3页
湖南大学微积分08-第8讲无穷小量ppt课件_第4页
湖南大学微积分08-第8讲无穷小量ppt课件_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高等院校非数学类本科数学课程脚本编写、教案制作:刘楚中 彭亚新 邓爱珍 刘开宇 孟益民 第三章 函数的极限与连续性本章学习要求: 了解函数极限的概念,知道运用“和 “X ”语言描 述函数的极限。 理解极限与左右极限的关系。熟练掌握极限的四则运算法则 以及运用左右极限计算分段函数在分段点处的极限。 理解无穷小量的定义。理解函数极限与无穷小量间的关系。 掌握无穷小量的比较,能熟练运用等价无穷小量计算相应的 函数极限。了解无穷大量的概念及其与无穷小量的关系。 理解极限存在准则。能较好运用极限存在准则和两个重要极 限求相应的函数极限。 理解函数在一点连续以及在区间上连续的概念,会判断函数 间断点的类型

2、。了解基本初等函数和初等函数的连续性以及 闭区间上连续函数的性质介值定理、最值定理)。 理解幂级数的基本概念。掌握幂级数的收敛判别法。第三章 函数的极限与连续性第二节 无穷小量、无穷大量一.无穷小量及其运算性质二. 无穷大量 简言之, 在某极限过程中, 以 0 为极限的量称该极限过程中的一个无穷小量.例1 . , 0 0,lim ) 1 (220是一个无穷小量时 xxxx . sin , 0 0,sinlim )2(0是一个无穷小量时xxxx . 1 , 0,1lim )3(是一个无穷小量时xxxx . cos , 2 0,coslim )4(2是一个无穷小量时xxxx 0,0 lim )5(

3、在任何一个极限过程中, 常值函数 y = 0 均为无穷小量. , )0( 0 , 0使当若X , )| ( | 0 0时Xxxx | )(|xf , )( )( ,0时当则称成立xxxxf . 为无穷小量分析 , | 0 , 0 , )(lim 00时当则若xxaxfxx , |0)( | |)(|axfaxf . )( , 0是一个无穷小量时即当axfxx , )( 0)( , )()( 0且则令xxxaxfx . )( )()(0 xxxaxf反之亦然. 由以上的分析, 你可得出 什么结论 ? 由此可看出, 寻找函数极限运算法则可归结为寻找无穷小量的运算法则. )(lim)(0axfxxx

4、, )()(xaxf . )( , ( 0)( , 0 xxxx其中 同一个极限过程中的有限个无穷小量之和仍是一个无穷小量. 同一个极限过程中的有限个无穷小量之积仍为无穷小量. 常数与无穷小量之积仍为无穷小量. 在某极限过程中, 以极限不为零的函数除无穷小量所得到商仍为一个无穷小量. 在某一极限过程中, 无穷小量与有界量之积仍是一个无穷小量.证明:在某极限过程中, 两个无穷小量之 和仍是一个无穷小量.证 , , 0则时的两个无穷小量为设xx , 0, 2 | , | 0 , 0101时当xx, 2 | , | 0 , 0202时当xx , | 0 , ,min 021有时则当取xx , 22

5、| | . , 0是一个无穷小量时即 xx 证明: 在某一极限过程中, 无穷小量与 有界量的积仍是一个无穷小量.证 , 0 0 , )( 10和即时的有界量是设Mxxxf . | )(| , ),U( 10Mxfxx时使当 , 0 , 0 , )( 0)( 20使当则又设xxx . | )(| , | 020Mxxx时 , | 0 ,min 021时则当令xxMMxxfxxf | )(| )(| | )()(| . )()( , 0为无穷小量时故当xxfxx例2证0sin1limxxx证明) ( , 01 lim 无穷小量因为xx) ( , ),( 1 |sin|有界量xx . 0sin1li

6、m xxx故有界量与无穷小量的乘积证明:在某极限过程中以极限不为零的函数 除无穷小量所得到商仍为一个无穷小量.证 . )( 0)( ; 0 , )(lim 00 xxxaaxfxx设 , | 0 , 0 ,2| 000有时当则取xxa , 2| |)(|aaxf , ),U( |2 )(1 2| | )(| 00 xxaxfaxfa故 . )(1 , 0有界时即xfxx . 0)()(lim 0 xfxxx故(i) 一般说来,有界量的倒数不一定有界. 例如, f (x) = x, x(0, 1).(ii) 我们没有涉及两个无穷小量商的极限的 情形,因为它的情形较复杂,将在以后专 门讨论. .

7、,3 , , , 0 ,223223的情况时可观察例如xxxxxxx 例3. 4lim 230 xxx求解 ) ( , 0lim 30无穷小量由于xx ) ( , 4)4(lim20极限不为零xx . 04lim 230 xxx故 , | , 0 , 0有时当若XxXMMxf | )(| , )( ,记为时的无穷大量为则称成立xxf. )( )( )(limxxfxfx或 . )(lim ,)( 称为正无穷大量则换成xfMxfx . )(lim ,)( 称为负穷大量则换成xfMxfx例4, (i)2xy ,ln (iii)xy .lim2xx,lnlim0 xx.lnlimxx,tan (iv

8、)xy ,tanlim2xx.tanlim2xx, (ii)3xy .lim3xx(iii), (iv) 自己画画图会更清楚.例5 ? )2( , 是否为无穷大量时当nnxn解有时则当取 , , log 2NnMNMn |)2( | . )2(limlim nnnnx故 , 0M 2 |)2( | | Mxnnn要 , log2Mn 无穷大量是按绝对值定义的.例6无穷大量是否一定是无界量 ?在某极限过程中,无界量是否一定是无穷大量 ? . 2) 1( , , 0 ,2 , 0 , , 4 , 0 , 2 , 0 : ,nnxnxnnn例如 0 , , 的项使总有等于时当取多么大不论NnN |M

9、xn . , ,不是无穷大量时故当不成立nxn但该数列是无界的. 当 x 时, 函数 sinx、cosx, 是否为无穷大量 ?因为sinx、cosx 是有界函数, 所以在任何极限过程中它们都不是无穷大量. ( 无穷大量的倒数为无穷小量, x 0 )( 无穷小量的倒数为无穷大量, x 0 )那么例7 . 0 ),( , 1)( xxxxf且设. 01lim ) 1 (xx.1lim )2(0 xx在某一极限过程中 请自己根据定义自已进行证明. , 0)( )( xfxf是一个无穷大量且若 . )(1 为无穷小量则xf , 0)( )( xfxf是一个无穷小量且若 . )(1 为无穷大量则xf ,

10、)(lim xf若无穷大量一定是同一极限过程中的无界量.反之不真反之不真 . | )(|lim xf则在某极限过程中,两个无穷大量之积仍是一个无穷大量.在某极限过程中, 无穷大量与有界量之和仍为无穷大量. , 0 , , 0 , 0 :nnyx , 8 , 6 , 4 , 2 :nnyx ,) 1( , , 4 , 3 2, , 1 :nxnn ,) 1( , , 4 , 3 2, , 1 :1nynn此时时显然 . , , ,nnyxn例8两个无穷大量的和是否仍为无穷大量?考察考察例9有界量与无穷大量的乘积是否一定为无穷大量? 不着急, 看个例题: , )( )(1xxxf 1, 1 | )(| , ) 1 | ( 2xxgxx时不妨设当 . )( 011)()( 21xxxxxgxf而 , )( )(32xxxf . )( 1)()(232xxxxxgxf例9有界量与无穷大量的乘积是否一定为无穷大量? 不着急, 看个例题: , )( )(1xxxf 1, 1 | )(|

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论