




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题学习专题学习 -几何证明中常见的几何证明中常见的 “添辅助线添辅助线”方法方法 -“-“周长问题周长问题”的转化的转化.连结连结目的目的: :构造构造全等三角形全等三角形或或等腰三角形等腰三角形适用情况适用情况: :图中已经图中已经存在两个点存在两个点X X和和Y Y语言描述语言描述: :连结连结XYXY注意点注意点: :双添双添-在图形上添虚线在图形上添虚线 在在证明过程中描述添法证明过程中描述添法.连结连结典例典例1: 1:如图如图,AB=AD,BC=DC,AB=AD,BC=DC,求证求证:B=D.:B=D.ACBD1. 1.连结连结ACAC构造全等三角形构造全等三角形2. 2.连结连
2、结BDBD构造两个等腰三角形构造两个等腰三角形.连结连结典例典例2: 2:如图如图,AB=AE,BC=ED, B=E,AMCD,AB=AE,BC=ED, B=E,AMCD, 求证求证: :点点M M是是CDCD的中点的中点. .ACBD连结连结ACAC、ADAD构造全等三角形构造全等三角形EM.连结连结典例典例3: 3:如图如图,AB=AC,BD=CD, M,AB=AC,BD=CD, M、N N分别是分别是BDBD、CDCD的中点,求证:的中点,求证:AMBAMB ANCANCACBD连结连结ADAD构造全等三角形构造全等三角形NM.连结连结典例典例4: 4:如图如图,AB,AB与与CDCD交
3、于交于O, O, 且且AB=CDAB=CD,AD=BCAD=BC,OB=5cmOB=5cm,求,求ODOD的长的长. .ACBD连结连结BDBD构造全等三角形构造全等三角形O目的目的: :构造构造直角三角形直角三角形, ,得到得到距离相等距离相等适用情况适用情况: :图中已经图中已经存在一个点存在一个点X X和和一条线一条线MNMN语言描述语言描述: :过点过点X X作作XYXYMNMN注意点注意点: :双添双添-在图形上添虚线在图形上添虚线 在在证明过程中描述添法证明过程中描述添法.角平分线上点向两边作垂线段角平分线上点向两边作垂线段.角平分线上点向两边作垂线段角平分线上点向两边作垂线段典例
4、典例1: 1:如图如图, ,ABCABC中中, C =90, C =90o o,BC=10,BD=6,BC=10,BD=6, AD AD平分平分BAC,BAC,求点求点D D到到ABAB的距离的距离. .ACD过点过点D D作作DEABDEAB构造了构造了: :全等的全等的直角三角形直角三角形且且距离相等距离相等BE.角平分线上点向两边作垂线段角平分线上点向两边作垂线段典例典例2: 2:如图如图, ,ABCABC中中, C =90, C =90o o,AC=BC,AC=BC, AD AD平分平分BAC,BAC,求证求证:AB=AC+DC.:AB=AC+DC.ACD过点过点D D作作DEABDE
5、AB构造了构造了: :全等的全等的直角三角形直角三角形且且距离相等距离相等BE 思考思考: : 若若AB=15cm,AB=15cm,则则BEDBED的周长是多少的周长是多少? ?.角平分线上点向两边作垂线段角平分线上点向两边作垂线段典例典例3: 3:如图如图, ,梯形中梯形中, A= D =90, A= D =90o o, , BE BE、CECE均是角平分线均是角平分线, , 求证求证:BC=AB+CD.:BC=AB+CD.ACD过点过点E E作作EFBCEFBC构造了构造了: :全等的全等的直角三角形直角三角形且且距离相等距离相等BF 思考思考: : 你从本题中还能得到哪些结论你从本题中还
6、能得到哪些结论? ?E.角平分线上点向两边作垂线段角平分线上点向两边作垂线段典例典例4: 4:如图如图,OC ,OC 平分平分AOB, DOE +DPE =180AOB, DOE +DPE =180o o, , 求证求证: PD=PE.: PD=PE.ACD过点过点P P作作PFOA,PG OBPFOA,PG OB构造了构造了: :全等的全等的直角三角形直角三角形且且距离相等距离相等BF 思考思考: : 你从本题中还能得到哪些结论你从本题中还能得到哪些结论? ?EPGO目的目的: :构造构造直角三角形直角三角形, ,得到得到斜边相等斜边相等适用情况适用情况: :图中已经存在图中已经存在一条线一
7、条线段段MNMN和和垂直平垂直平分线上一个点分线上一个点X X 语言描述语言描述: :连结连结X XM M和和X XN N注意点注意点: :双添双添-在图形上添虚线在图形上添虚线 在在证明过程中描述添法证明过程中描述添法.垂直平分线上点向两端连线段垂直平分线上点向两端连线段目的目的: :构造构造直角三角形直角三角形, ,得到得到斜边相等斜边相等适用情况适用情况: :图中已经存在图中已经存在一条线段一条线段MNMN和和垂直平垂直平分线上一个点分线上一个点X X 语言描述语言描述: :连结连结X XM M和和X XN N注意点注意点: :双添双添-在图形上添虚线在图形上添虚线 在在证明过程中描述添
8、法证明过程中描述添法.中线延长一倍中线延长一倍1.AD1.AD是是ABCABC的中线,的中线,.中线延长一倍中线延长一倍ABCDE)(21ACABAD求证:延长延长ADAD到点到点E E,使,使DE=ADDE=AD,连结连结CE.CE.角平分线上点向两边作垂线段角平分线上点向两边作垂线段2. 2.如图如图, ,梯形中梯形中, A= D =90, A= D =90o o, , BE BE、CECE均是角平分线均是角平分线, , 求证求证:BC=AB+CD.:BC=AB+CD.延长延长BEBE和和CDCD交于点交于点F F构造了构造了: :全等的全等的直角三角形直角三角形F 思考思考: : 你从本
9、题中还能得到哪些结论你从本题中还能得到哪些结论? ?ACDBE1. 1.如图如图, ,ABCABC中中,C=90,C=90o o,AC=BC,AD,AC=BC,AD平分平分ACB,ACB, DEAB. DEAB.若若AB=6cm,AB=6cm,则则DBEDBE的周长是多少的周长是多少? ?.“.“周长问题周长问题”的转化的转化 借借助助“角平分线性质角平分线性质”BACDEBE+BD+DEBE+BD+CDBE+BCBE+ACBE+AEAB2. 2.如图如图, ,ABCABC中中, D, D在在ABAB的垂直平分线上的垂直平分线上, ,E E在在ACAC的垂直平分线上的垂直平分线上. .若若BC
10、=6cm,BC=6cm,求求ADEADE的周长的周长. .“.“周长问题周长问题”的转化的转化 借借助助“垂直平分线性质垂直平分线性质”BACDEAD+AE+DEBD+CE+DEBC3. 3.如图如图,A,A、A A1关于关于OMOM对称对称, A, A、A A2关于关于ONON对称对称. .若若A A1 A A2 =6cm, =6cm,求求ABCABC的周长的周长. .“.“周长问题周长问题”的转化的转化 借借助助“垂直平分线性质垂直平分线性质”BACOMAB+AC+BCA A1 B+ A A2 C+BCA A1 A A2A1A2N4. 4.如图如图, , ABCABC中,中,MNMN是是ACAC的垂直平分线的垂直平分线. .若若AN=3cm, AN=3cm, ABMABM周长为周长为13cm13cm,求,求ABCABC的周长的周长. .“.“周长问题周长问题”的转化的转化 借借助助“垂直平分线性质垂直平分线性质”BACMAB+BC+ACAB+ BM+MC+6NAB+ BM+AM+613+65. 5.如图如图, , ABCABC中,中,BPBP、CPCP是是ABCABC的角平分线,的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨境电商物流体系2025年初步设计评估报告
- 二零二五年度旅游线路开发与代理推广合同
- 二零二五年度二手车买卖双方车辆登记协议
- 二零二五年度KTV消防安全责任书范本
- 2025年度家庭智能设备维护及升级服务合同
- 二零二五年度物流行业点工合同模板
- 2025版吊装设备制造与销售合同范本
- 二零二五年度装配式建筑技术创新房屋修建承包合同范本
- 2025年度民政局版离婚协议书十:婚姻解除合同范本
- 二零二五年度二手空调产品进出口代理合同
- 律师事务所案件管理系统操作指南
- 高中英语语法大全总结
- DL∕T 5344-2018 电力光纤通信工程验收规范
- 山东财经大学《大学英语》2022-2023学年期末试卷
- 知识题库-机动车检测站授权签字人试题库及答案
- 助产士进修汇报护理课件
- 餐饮品牌授权书
- 甲状腺手术中甲状旁腺保护课件
- 汽车拖拉机学(下)
- 客服岗位述职报告
- 儿科常见疾病诊断与治疗指南培训课件
评论
0/150
提交评论