专题4解析几何PPT课件_第1页
专题4解析几何PPT课件_第2页
专题4解析几何PPT课件_第3页
专题4解析几何PPT课件_第4页
专题4解析几何PPT课件_第5页
已阅读5页,还剩151页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、HUN-文科数学数学数学数学决胜高考专案突破名师诊断对点集训题型2019年2019年2019年小题第14题:直线与抛物线的位置关系.第5题:已知双曲线的渐近线方程求参数的值.第5题:求双曲线的方程.大题第19题:直线与圆锥曲线的位置关系(圆、椭圆的方程,等比数列求和).第21题:直线与圆锥曲线的位置关系(求方程、探索是否存在).第21题:直线与抛物线的位置关系(求轨迹方程、证明纵坐标之积为定值).【考情报告】名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考【考向预测】1.直线的方程命题重点是:直线的倾斜角与斜率,两条直线的位置关系,对称及与其他知识结合调查间隔等.2.圆的方程命

2、题重点是:由所给条件求圆的方程、直线与圆的位置关系、圆与圆的位置关系.3.圆锥曲线命题重点是:常经过客观题调查圆锥曲线的根本量(概念、性质).经过大题调查直线与椭圆、抛物线的位置关系,求圆锥曲线的方程等.4.在知识交汇处命题是解析几何的显著特征:与平面向量、三角函名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考数、不等式、数列、导数等知识结合,调查综合分析与处理问题的才干.如结合三角函数调查角、间隔;结合二次函数调查最值;结合平面向量调查平行、垂直、面积以及求参数的取值范围等.命题中常涉及数形结合思想、方程思想、分类讨论思想、等价转化思想.【知能诊断】名师诊断名师诊断专案突破专

3、案突破对点集训对点集训决胜高考决胜高考1.过点(5,2),且在y轴上的截距是在x轴上的截距的2倍的直线方程是( )(A)2x+y-12=0.(B)2x+y-12=0或2x-5y=0.(C)x-2y-1=0.(D)x-2y-1=0或2x-5y=0.【解析】当直线过原点时,方程为2x-5y=0;不过原点时,可设其截距式方程为+=1,再由过点(5,2)即可解出a=6.xa2ya【答案】B名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考2.“ab=4是“直线2x+ay-1=0与直线bx+2y-2=0平行的( )(A)充分必要条件.(B)充分不用要条件.(C)必要不充分条件.(D)既不充

4、分也不用要条件.【解析】直线2x+ay-1=0与直线bx+2y-2=0平行的充要条件是-=-且-1,即ab=4且a1,那么“ab=4是“直线2x+ay-1=0与直线bx+2y-2=0平行的必要而不充分条件.2a2b1a【答案】C名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考3.(2019年天津)设m,nR,假设直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,那么m+n的取值范围是( )(A)1-,1+.(B)(-,1-1+,+).(C)2-2,2+2.(D)(-,2-22+2,+).【解析】圆心为(1,1),那么圆心到直线(m+1)x+(n+1)

5、y-2=0的间隔为d=1,得4mn=4(m+n)+4(m+n)2,解得m+n2+2或m+n2-2.3333222222|(1)(1)mnmn22【答案】D名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考4.(2019兰州调研)“-3m5是“方程+=1表示椭圆的( )(A)充分不用要条件.(B)必要不充分条件.(C)充要条件.(D)既不充分也不用要条件.【解析】要使方程+=1表示椭圆,应满足解得-3m5且m1,25xm23ym25xm23ym50,30,53,mmmm名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考因此“-3m0),即-=1,a2=,b2=3,焦点

6、坐标为(-4,0),(4,0),c=4.c2=a2+b2=4=16=4,双曲线方程为-=1.【答案】 D328x224y212x24y224x28y24x212y323y2x23y24x212y名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考7.(南京市、盐城市2019届高三年级第三次模拟)在平面直角坐标系xOy中,过点A(-2,-1)的椭圆C:+=1(ab0)的左焦点为F,短轴端点为B1、B2,=2b2.(1)求a、b的值;(2)过点A的直线l与椭圆C的另一交点为Q,与y轴的交点为R.过原点O且平行于l的直线与椭圆的一个交点为P.假设|AQ|AR|=3 |OP|2,求直线l的

7、方程.【解析】(1)由于F(-c,0),B1(0,-b),B2(0,b),所以=(c,-b),=(c,b).22xa22yb1FB2FB1FB2FB名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考由于=2b2,所以c2-b2=2b2.由于椭圆C过A(-2,-1),代入得+=1.由解得a2=8,b2=2,即a=2,b=.(2)由题意,设直线l的方程为y+1=k(x+2),所以R(0,2k-1).由得(x+2)(4k2+1)(x+2)-(8k+4)=0.由于x+20,所以x+2=,即xQ+2=.1FB2FB24a21b22221(2),1,82yk xxy 28441kk28441

8、kk名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考由题意,直线OP的方程为y=kx.由得(1+4k2)x2=8.那么=.由于|AQ|AR|=3|OP|2,所以|xQ-(-2)|0-(-2)|=3.即|2=3.解得k=1,或k=-2.22,1,82ykxxy2px2814k2px28441kk2814k名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考当k=1时,直线l的方程为x-y+1=0,当k=-2时,直线l的方程为2x+y+5=0.名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考1.直线方程的截距式只适用于截距存在且不为零的情况,此题容易漏掉

9、截距为零时的情形.2.易忽略两直线重合时的情形.判别两直线能否平行时需求思索直线的斜率能否存在以及两直线能否会重合.3.(1)直线方程中含字母时不太会用点到直线的间隔公式;(2)不会用重要不等式进展转化求最值.4.易忽略“圆不是椭圆的特殊方式.5.易默许椭圆是焦点在x轴上的椭圆,忽略对椭圆的焦点所在位置进行分类讨论.【诊断参考】名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考6.易忽视焦点位置对双曲线方程的影响,双曲线的渐近线方程表示方式与焦点位置有关.7.(1)易将椭圆规范方程中参数a、b、c的关系与双曲线规范方程中三者关系相混淆;(2)涉及用点斜式设过一点的直线方程时,一定

10、要优先思索斜率能否存在,有时需求分类讨论;(3)列方程组求解直线与圆锥曲线关系问题时,不少学生一方面怕算,另一方面不会用设而不求法或其他方式简化运算.名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考 【中心知识】一、直线与圆1.直线的倾斜角:直线倾斜角的范围是0,).2.直线的斜率:(1)直线倾斜角为(90)的直线的斜率k=tan (90);倾斜角为90的直线斜率不存在;(2)经过两点P1(x1,y1)、P2(x2,y2)的直线的斜率为k=(x1x2).1212yyxx名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考3.直线的方程:(1)点斜式:y-y0=k(x

11、-x0)(不包括垂直于x轴的直线);(2)斜截式: y=kx+b(不包括垂直于x轴的直线);(3)两点式: =(不包括垂直于坐标轴的直线);(4)截距式:+=1(不包括垂直于坐标轴的直线和过原点的直线);(5)普通式:任何直线均可写成Ax+By+C=0(A、B不同时为0)的方式;(6)设直线方程的一些常用技巧:与直线l:Ax+By+C=0平行的直线可设为Ax+By+C1=0;与直线l:Ax+By+C=0垂直的直线可设为Bx-Ay+C1=0.4.两直线的位置关系直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0的位置关系:121yyyy121xxxxxayb名师诊断名师诊断专

12、案突破专案突破对点集训对点集训决胜高考决胜高考(1)平行A1B2-A2B1=0且B1C2-B2C10;(2)相交A1B2-A2B10;(3)重合A1B2-A2B1=0且B1C2-B2C1=0.特殊地,直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0垂直A1A2+B1B2=0.5.间隔公式:(1)点P(x0,y0)到直线Ax+By+C=0的间隔d=;(2)两平行线l1:Ax+By+C1=0,l2:Ax+By+C2=0(C1C2)间的间隔为d=0022|AxByCAB名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考.6.圆的方程:(1)圆的规范方程:(x-a)

13、2+(y-b)2=r2;(2)圆的普通方程:x2+y2+Dx+Ey+F=0(其中D2+E2-4F0).7.直线与圆的位置关系直线l:Ax+By+C=0和圆C:(x-a)2+(y-b)2=r2(r0)的位置关系的判别:(1)代数方法(判别直线与圆方程联立所得方程组的解的情况):0相交,0相离,=0相切;(2)几何方法(比较圆心到直线的间隔与半径的大小):设圆心到直线的间隔为d,那么dr相离,d=r1222|CCAB名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考相切.8.圆与圆的位置关系:设两圆圆心分别为O1、O2,半径分别为r1、r2,|O1O2|=d. dr1+r2外离4条公

14、切线;d=r1+r2外切3条公切线;|r1-r2|dr1+r2相交2条公切线;d=|r1-r2|内切1条公切线;0d|r1-r2|内含无公切线.判别两个圆的位置关系也可以经过联立方程组由公共解的个数来处理.二、圆锥曲线1.灵敏运用圆锥曲线的定义名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考(1)要注重“括号内的限制条件:椭圆中,与两个定点F1、F2的间隔的和等于常数2a,且此常数2a一定要大于|F1F2|;双曲线中,与两定点F1、F2的间隔的差的绝对值等于常数2a,且此常数2a一定要小于|F1F2|,定义中的“绝对值与2ab0);焦点在y轴上时+=1(ab0).22xa22y

15、b22ya22xb名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考(2)双曲线:焦点在x轴上时-=1(a0,b0);焦点在y轴上时-=1(a0,b0).(3)抛物线:开口向右时y2=2px(p0);开口向左时y2=-2px(p0);开口向上时x2=2py(p0);开口向下时x2=-2py(p0).3.圆锥曲线的几何性质:范围、顶点、对称中心与对称轴、离心率、渐近线、准线等.4.直线与圆锥曲线的位置关系:利用直线方程与圆锥曲线方程联立方程组,由方程组解的个数来确定直线与圆锥曲线的位置关系.5.弦长公式:假设直线y=kx+b与圆锥曲线相交于两点A、B,且x1、x2分别22xa22y

16、b22ya22xb名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考为A、B的横坐标,那么|AB|=|x1-x2|,假设y1、y2分别为A、B的纵坐标,那么|AB|=|y1-y2|.6.圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理或“点差法求解.特别提示:由于0是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,留意别忘了检验0!7.常用结论(1)双曲线-=1(a0,b0)的渐近线方程为-=0;21k211k22xa22yb22xa22yb名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考(2)以y=x为渐近线的双曲线方程为-=(为参数,0);

17、(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为mx2+ny2=1;(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)长为,抛物线的通径长为2p,焦准距为p; (5)通径是一切焦点弦(过焦点的弦)中最短的弦;(6)假设抛物线y2=2px(p0)的焦点弦为AB,A(x1,y1),B(x2,y2),那么|AB|=x1+x2+p,x1x2=,y1y2=-p2;ba22xa22yb22ba24p名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考(7)假设OA、OB是过抛物线y2=2px(p0)顶点O的两条相互垂直的弦,那么直线AB恒经过定点(2p,0).8.动点轨迹(或方程)(

18、1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;(2)求轨迹方程的常用方法:直接法,待定系数法,定义法,代入转移法,参数法.【考点突破】热点一:直线方程及相关问题名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考直线部分,主要调查直线的斜率与倾斜角、间隔公式、直线方程、两直线的位置关系等,试题多以选择、填空题的方式出现,属于根底题型,难度普通不大.解析几何中的大题也常调查直线的根底知识.假设aR,那么“a=-4是“直线l1 ax+2y-1=0与直线l2:2x+(a+3)y-2=0平行的( )(A)充分不用要条件.(B)必要不充分条件.(C)充分必要条件.(D)既不充分

19、也不用要条件.名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考【分析】先求出两直线平行时a的值,再来确定前者是后者的什么条件.【解析】由a(a+3)-4=0得a=-4或a=1,当a=1时两直线重合;当a=-4时两直线平行,所以两直线平行等价于a=-4,所以为充分必要条件.【答案】C【归纳拓展】(1)命题的逻辑关系的判别可以经过判别两个命题的真假,也可以看对应集合的关系来确定.(2)在判别两条直线平行或垂直时,需求思索两条直线的斜率能否存在.在不重合的直线l1与l2的斜率都存在的情况下才可以运用结论:l1l2k1=k2,l1l2k1k2=-1处理两直线的平行与垂直问题.名师诊断名

20、师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考变式训练1 (江苏省盐城市2019届高三年级第二次模拟)假设直线y=kx+1与直线2x+k2y-4=0垂直, 那么k= .【解析】直线y=kx+1化为kx-y+1=0,由2k+(-1)k2=0得k=0或k=2.【答案】0或2名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考热点二:直线与圆直线与圆主要调查直线与圆的方程的根本知识,如圆的规范方程、圆的普通式方程、直线与圆的位置关系等,试题可以是选择、填空题,也可蕴含在大题中调查,普通是根底题,难度不大,解题时应留意发掘圆的几何性质以及数形结合思想的运用. (江苏省南京市2019

21、年3月高三第二次模拟)知圆C经过直线2x-y+2=0与坐标轴的两个交点,又经过抛物线y2=8x的焦点,那么圆C的方程为 .名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考【分析】先求出圆所经过的三个点,然后利用待定系数法求圆的方程.【解析】直线与坐标轴的两个交点为(0,2)、(-1,0),抛物线的焦点为(2,0),设圆的方程为x2+y2+Dx+Ey+F=0,将点的坐标代入得圆的方程为x2+y2-x-y-2=0.【答案】x2+y2-x-y-2=0 【归纳拓展】此题也可以利用圆经过两点,那么圆心在两点连线段的中垂线上,经过求出圆心坐标和半径,写出圆的规范方程.求圆的方程名师诊断名师

22、诊断专案突破专案突破对点集训对点集训决胜高考决胜高考常可根据条件选择是先求圆心与半径写出规范方程,还是设出圆的普通方程利用待定系数法求解.名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考变式训练2 在平面直角坐标系中,直线y=kx-2与圆C:x2+y2-8x+12=0有公共点,那么k的最大值是 .【解析】圆C的方程可化为:(x-4)2+y2=4,圆C的圆心为(4,0),半径为2.依题意2,0k.k的最大值是.【答案】 2|42|1kk434343名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考知动圆C的圆心在直线l:x-y+10=0上.(1)假设动圆C过点A(-

23、5,0)、B(-2,1),求圆C的方程;(2)假设圆C的半径为5,能否存在正实数r,使得动圆C中满足与圆O:x2+y2=r2相外切的圆有且仅有一个?假设存在,恳求出来,假设不存在,请阐明理由.【分析】(1)此题可以根据条件求出圆心与半径,写出圆的规范方程;(2)利用两圆的位置关系与圆心距之间的关系求解.【解析】 (1)由于圆C过点A、B,所以圆心在线段AB的中垂线上,即圆心C在直线3x+y+10=0上,又圆心在直线x-y+10=0上,所以圆心C(-5,5),半径为|CA|=5,所以圆C的方程为(x+5)2+(y-5)2=25.名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考(2

24、)圆O的圆心(0,0)到直线l的间隔d=5.当r满足r+5d时,r每取一个数值,动圆C中存在两个圆与圆O:x2+y2=r2相外切;当r满足r+5=d,即r=5-5时,动圆C中有且仅有1个圆与圆O:x2+y2=r2相外切.【归纳拓展】(1)根据条件选择适当的圆的方程:当条件涉及圆心、半径时常思索用规范方程;知道圆上点的坐标时可以先设出普通式,利用待定系数法求解;(2)直线与圆的位置关系以及圆与圆的位置关|10|1 122系常思索利用几何法,充分利用圆的几何特征求解,可以简化运算.名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考变式训练3知圆C:x2+(y-a)2=4,点A(1,0

25、).(1)当过点A的圆C的切线存在时,务虚数a的取值范围;(2)设AM、AN为圆C的两条切线,M、N为切点,当MN=时,求MN所在直线的方程.【解析】(1)过点A的切线存在,即点A在圆外或圆上,1+a24,a或a-.(2)设MN与AC交于点D,O为坐标原点.MN=,DM=.4 55334 552 55名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考又MC=2,CD=,cosMCA=, AC=,OC=2,AM=1,MN是以点A为圆心,半径AM=1的圆A与圆C的公共弦,圆A的方程为(x-1)2+y2=1,圆C的方程为x2+(y-2)2=4,或x2+(y+2)2=4,MN所在直线的方

26、程为44545452252255名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考(x-1)2+y2-1-x2-(y-2)2+4=0,即x-2y=0,或(x-1)2+y2-1-x2-(y+2)2+4=0,即x+2y=0,因此,MN所在直线的方程为x-2y=0或x+2y=0.名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考热点三:圆锥曲线的定义、方程及几何性质圆锥曲线的定义、方程与几何性质是这部分内容的基石,是高考的重点及热点.圆锥曲线的定义、规范方程、离心率等都是常考内容,多以选择、填空题的方式出现,普通是中档题. (1)(2019年江苏省南通、泰州、扬州苏中三市

27、高三第二次调研)假设抛物线y2=2px(p0)上的点A(2,m)到焦点的间隔为6,那么p= .(2)(江苏省南京市2019届高三3月第二次模拟)知双曲线-y2=1的一条渐近线方程为x-2y=0,那么该双曲线的离心率e= .22xa名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考【分析】(1)利用抛物线的定义,将点A到焦点的间隔用点A的横坐标及参数p表示,进而求解.(2)由双曲线的渐近线方程可求得参数a的值,进而求得离心率.【解析】(1)由抛物线的定义知点A(2,m)到焦点的间隔为2+=6,解得p=8.(2)依题意=()2,所以|a|=2,离心率为.【答案】(1)8 (2) 【归

28、纳拓展】(1)调查抛物线的定义,简单题.焦点在x轴上的抛物线y22p21a125252名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考=2ax(a0)上的点P(x0,y0)到焦点F的间隔为|PF|=|+|x0|;焦点在y轴上的抛物线x2=2ay(a0)上的点P(x0,y0)到焦点F的间隔为|PF|=|+|y0|.(2)焦点在x轴上的双曲线-=1的渐近线方程为y=x;焦点在y轴上的双曲线-=1的渐近线方程为y=x.求双曲线或椭圆的离心率:可以直接求出a、c,然后计算得离心率;也可以利用条件列出a、c的方程转化为的方程,进而求出离心率.需求留意的是椭圆与双曲线的离心率都有范围限制.

29、2a2a22xa22ybba22ya22xbabcaca名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考变式训练4 (1)(2019北京海淀区高三年级第一学期期末)抛物线x2=ay过点A(1,),那么点A到此抛物线的焦点的间隔为 . (2)(苏锡常镇四市2019届高三教学调研测试二)知双曲线-=1(m0)的一条渐近线方程为y=x,那么m的值为 .【解析】(1)由知可得:1=a,a=4.x2=4y.由抛物线的定义可知A点到焦点间隔为A到准线的间隔:yA+=+1=.(2)依题意,双曲线的方程为y=x,所以=,所以m=4.142xm23y32142p14543m3m32【答案】(1)

30、 (2)454名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考如图,A为椭圆+=1(ab0)上的一个动点,弦AB、AC分别过焦点F1、F2,当AC垂直于x轴时,恰好有|AF1| |AF2|=3 1.(1)求椭圆的离心率;22xa22yb(2)设=1,=2,1、2R.当A点为该椭圆上的一个动点时,试判别1+2能否为定值?假设是,请证明,假设不是,请阐明理由.【分析】(1)利用椭圆的定义、性质以及勾股定理,可以找到a与c的关系,进而容易求出离心率.1AF1FB2AF2F C名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考【解析】(1)当ACx轴时,设|AF2|=m,

31、那么|AF1|=3m.(2)设出相关点的坐标,利用向量关系式得出1、2的等式,把1+2表示成y1、y2的关系式,接下来自然是联立直线与椭圆的方程组成方程组,利用韦达定理得到结果.由题设及椭圆定义得 消去m得a2=2c2,所以离心率e=.(2)(法一)由(1)知,b2=c2,所以椭圆方程可化为x2+2y2=2c2.222(3 )(2 ) ,32 ,mmcmma22设A(x0,y0),B(x1,y1),C(x2,y2),那么+2=2c2.假设A为椭圆的长轴端点,20 x20y名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考那么1=,2=或1=,2=,acacacacacacacac

32、所以1+2=6.假设A为椭圆上异于长轴端点的恣意一点,那么由=1,=2,得1=-,2=-,所以1+2=-y0(+).又直线AF1的方程为x+c=y,所以由得22222()acac1AF1FB2AF2F C01yy02yy11y21y00 xcy00222,22,xcxcyyxyc名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考2+(x0+c)2y2-2cy0(x0+c)y-c2=0.+2=2c2,(3c+2x0)y2-2y0(x0+c)y-c=0.由韦达定理得y0y1=-,y1=-.同理y2=.1+2=-y0(+)20y20y20 x20y20y20032cycx0032cyc

33、x0032cycx11y21y名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考=-y0(-+)=6.综上证得,当A点为该椭圆上的一个动点时,1+2为定值6.(法二)设A(x0,y0),B(x1,y1),C(x2,y2),那么=(-c-x0,-y0),=(x1+c,y1),=1,x1=-c,y1=-.又+2=2c2,+2=2c2,将x1、y1代入得(+c)2+2()2=2c2,0032cxcy0032cxcy1AF11FB1AF11FB01cx01y20 x20y21x21y01cx01y名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考即(c+x0+c1)2+2=

34、2c2,-得:2x0=c1-3c.同理:由=2得2x0=-c2+3c,c1-3c=-c2+3c,1+2=6.【归纳拓展】关于能否为定值的问题,普通先思索特殊位置探求结论,这不失为一种非常好的做法.另外,此题第(2)问解题过程中的“设而不求,“同理可得是一把犀利的武器,对于迅速破解此题起到至关重要的作用.20y212AF2F C名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考变式训练5 (江苏省南京市2019届高三3月第二次模拟)如图,在平面直角坐标系xOy中,椭圆C:+=1(ab0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方

35、程;(2)知点P(0,1),Q(0,2),设M、N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.22xa22yb32名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考【解析】(1)由题意知b=.由于离心率e=,所以=.所以a=2.所以椭圆C的方程为+=1.(2)由题意可设M,N的坐标分别为(x0,y0),(-x0,y0),那么直线PM的方程为y=x+1.直线QN的方程为y=x+2.222ca32ba21 ( )ca12228x22y001yx002yx名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考联立解得x=,y=,即T(,)

36、.由+=1可得=8-4.由于()2+()2=1.所以点T坐标满足椭圆C的方程,即点T在椭圆C上.0023xy 003423yy0023xy 003423yy208x202y20 x20y180023xy 12003423yy2200204(34)8(23)xyy220020844(34)8(23)yyy200203296728(23)yyy20208(23)8(23)yy名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考热点四:直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系是高考的一个重点与热点,综合性较高,难度较大,通常与圆锥曲线的方程、几何性质等一同调查. (盐城市2019

37、届高三年级第二次模拟考试)知椭圆+=1(ab0)的离心率为,且过点P(,), 记椭圆的左顶点为A.(1) 求椭圆的方程;(2) 设垂直于y轴的直线l交椭圆于B,C两点, 试求ABC面积的最大值;22xa22yb222212名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考(3) 过点A作两条斜率分别为k1,k2的直线交椭圆于D,E两点, 且k1k2=2, 求证: 直线DE恒过一个定点.【分析】(1)将点的坐标代入方程结合离心率以及a2=b2+c2可求出a、b的值,写出方程;(2)设出B点坐标,写出面积关于点B坐标的表达式并利用根本不等式求最值;(3)写出直线方程,将直线方程与椭圆

38、方程联立方程组求出D、E坐标,写出直线DE的方程,可证明直线过定点.名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考【解析】 (1)由解得所以椭圆C的方程为x2+2y2=1.(2)设B(m,n),C(-m,n),那么SABC=2|m|n|=|m|n|.222222,2111,24,caababc1,2,22,2abc12又1=m2+2n22=2|m|n|, 所以|m|n|,当且仅当|m|=|n|时取等号,从而SABC, 即ABC面积的最大值为.(3)由于A(-1,0),所以AD:y=k1(x+1),AE:y=k2(x+1),222m n22422424由消去y,得(1+2)x2

39、+4x+2-1=0,解得x=-1或x=,122(1),21yk xxy21k21k21k21211212kk名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考点D(,).21211212kk121212kk同理,有E(,),而k1k2=2,E(,),直线DE的方程为y-=(x-),即y-=(x-),即y=x+.所以2y-(3x+5)k1+4y=0,那么由得直线DE恒过定点(-,0).【归纳拓展】(1)椭圆既是轴对称图形又是中心对称图形,充分利用椭圆的对称性可以减少计算.(2)有关最值问题,可以利用根本不等式22221212kk222212kk212188kk12148kk1212

40、12kk1122112211221142812812812kkkkkkkk21211212kk121212kk12132(2)kk 21211212kk12132(2)kk 12152(2)kk 21k0,350,yx53求解,或转化为函数最值利用函数的有关性质求解.名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考变式训练6 (2019金华模拟)知过点A(-4,0)的动直线l与抛物线G:x2=2py(p0)相交于B、C两点.当直线l的斜率是时,=4.(1)求抛物线G的方程;(2)设线段BC的中垂线在y轴上的截距为b,求b的取值范围.【解析】 (1)设B(x1,y1),C(x2,

41、y2),当直线l的斜率是时,l的方程为y=(x+4),即x=2y-4.由得2y2-(8+p)y+8=0,12ACAB121222,24xpyxy名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考 又=4,y2=4y1,由及p0得:y1=1,y2=4,p=2,即抛物线G的方程为x2=4y.(2)设l:y=k(x+4),BC的中点坐标为(x0,y0),由得x2-4kx-16k=0,12124,8,2y ypyyACAB24 ,(4)xyyk x名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考x0=2k,y0=k(x0+4)=2k2+4k.线段BC的中垂线方程为y-2k

42、2-4k=-(x-2k),线段BC的中垂线在y轴上的截距为:b=2k2+4k+2=2(k+1)2.对于方程,由=16k2+64k0得k0或k-4,b(2,+).2CBxx1k名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考热点五:综合问题解析几何综合题除本身相关知识的综合外还常与平面向量、三角函数、不等式、函数等相综合,一方面调查相关根底知识,另一方面调查综合运用相关知识分析与处理问题的才干,同时也是对数学中的函数与方程思想、数形结合思想、等价转化思想以及分类讨论思想的调查. (广东省肇庆市中小学教学质量评价2019届高中毕业班第一次模拟)知圆C与两圆x2+(y+4)2=1、x

43、2+(y-2)2=1外切,圆C的圆心轨迹方程为L,设L上的点与点M(x,y)的间隔最小值为m,点F(0,1)与名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考点M(x,y)的间隔为n.(1)求圆C的圆心轨迹L的方程;(2)求满足条件m=n的点M的轨迹Q的方程;(3)试探求轨迹Q上能否存在点B(x1,y1),使得过点B的切线与两坐标轴围成的三角形的面积等于?假设存在,恳求出点B的坐标,假设不存在,请阐明理由.12名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考【分析】(1)利用动圆与两知圆相外切,可得动圆圆心C与两知圆的圆心的间隔关系,从而得点C的轨迹方程;(2)

44、可转化为到定点的间隔与到定直线间隔相等的点的轨迹,由抛物线的定义可得轨迹方程;(3)假设存在,写出三角形的面积关于点B坐标的表达式,利用条件列出方程求解,求出的坐标符合条件就存在,否那么不存在.【解析】(1)两圆半径都为1,两圆心分别为C1(0,-4)、C2(0,2),由题意得|CC1|=|CC2|,可知圆心C的轨迹是线段C1C2的垂直平分线,C1C2的中点为(0,-1),直线C1C2的斜率不存在,故圆心C的轨迹是线段C1C2的垂直平分线方程为y=-1,即圆C的圆心轨迹L的方程为y=-1.(2)由于m=n,所以M(x,y)到直线y=-1的间隔与到点F(0,1)的间隔相等,名师诊断名师诊断专案突

45、破专案突破对点集训对点集训决胜高考决胜高考故点M的轨迹Q是以y=-1为准线,点F(0,1)为焦点,顶点在原点的抛物线,=1,即p=2,所以轨迹Q的方程是x2=4y.(3)由(2)得y=x2, y=x,所以过点B的切线的斜率为k=x1,切线方程为y-y1=x1(x-x1),令x=0得y=-+y1,令y=0得x=-+x1,由于点B在x2=4y上,所以y1=,故y=-,x=x1,所以切线与两坐标轴围成的三角形的面积为S=|x|y|=|-|x1|=|,2p141212121221x112yx1421x1421x1212121421x1211631x名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高

46、考决胜高考设S=,即|=,得|x1|=2,所以x1=2.当x1=2时,y1=1,当x1=-2时,y=1,所以点B的坐标为(2,1)或(-2,1).【归纳拓展】(1)两圆相外切,那么两圆的圆心距等于两圆的半径和.(2)求轨迹或轨迹方程,可以用直接法、定义法、待定系数法、代入法等,根据不同的条件选用不同的方法.(3)曲线的切线问题,可以利用直线方程与圆锥曲线方程组成方程组,消去一个变量后转化为另一变量的二次方程有独一解来处理;假设曲线方程可写成y=f(x),那么它在x=x0处的切线方程为y-f(x0)=f(x0)(x-x0).1211631x12名师诊断名师诊断专案突破专案突破对点集训对点集训决胜

47、高考决胜高考变式训练7 知A(-2,0),B(2,0),动点P与A、B两点连线的斜率分别为kPA和kPB,且满足kPAkPB=t (t0且t-1).(1)求动点P的轨迹C的方程;(2)当t0时,曲线C的两焦点为F1、F2,假设曲线C上存在点Q使得F1QF2=120,求t的取值范围.名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考【解析】(1) 设点P坐标为(x,y),依题意得=ty2=t(x2-4)+=1.轨迹C的方程为+=1(x2). (2) 当-1t0时,曲线C为焦点在x轴上的椭圆,设|QF1|=r1,|QF2|=r2, 那么r1+r2=2a=4.在F1QF2中,|F1F2

48、|=2c=4,F1QF2=120,由余弦定理,得4c2=+-2r1r2cos 120=+r1r2 2yx2yx24x24yt24x24yt1 t21r22r21r22r名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考=(r1+r2)2-r1r2(r1+r2)2-()2=12, 16(1+t)12, t-.所以当-t0时,曲线上存在点Q使F1QF2=120. 当t-1时,曲线C为焦点在y轴上的椭圆,设|QF1|=r1,|QF2|=r2,那么r1+r2=2a=4,在F1QF2中,|F1F2|=2c=4.F1QF2=120,由余弦定理,得4c2=+-2r1r2cos 120=+r1r

49、2=(r1+r2)2-r1r2(r1+r2)2-()2=-12t, 16(-1-t)-12tt-4.所以当t-4时,曲线上存在点Q使F1QF2=120.122rr1414t1 t 21r22r21r22r122rr综上知当t0时,曲线上存在点Q使F1QF2=120的t的取值范围是(-,-4-,0).14名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考限时训练卷(一)一、选择题1.直线ax+2y-3=0与直线2x-3y+4=0垂直,那么a的值为( )(A)-3. (B)-.(C)2. (D)3.【解析】由(-)=-1,得a=3.【答案】D432a23名师诊断名师诊断专案突破专案突

50、破对点集训对点集训决胜高考决胜高考2.知两直线l1:x+ay+6=0与l2:(a-2)x+3y+2a=0平行,那么a的值为( )(A)3. (B)-1.(C)3或-1. (D)-3或1.【解析】由13=a(a-2),得a=3或a=-1,又a=3时两直线重合,所以a=-1时,l1l2.【答案】B名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考3.假设O(0,0),A(4,-1)两点到直线ax+ay+6=0的间隔相等,那么实数a等于( )(A)0或-4. (B).(C)-4. (D)-.【解析】由题意,得=,即4a-a+6=6,解之得a=0或-4,检验得a=0不合题意,所以a=-4

51、.【答案】C1414226aa22|46|aaaa名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考4.知圆C:x2+y2-4x=0,l是过点P(1,)的直线,那么( )(A)l与C相交.(B)l与C相切.(C)l与C相离.(D)以上三个选项均有能够.【解析】圆方程化为(x-2)2+y2=4,由于(1-2)2+()2=30)的公共弦的长为2,那么a= .【解析】两圆的方程相减,得公共弦所在的直线方程为(x2+y2+2ay-6)-(x2+y2)=0-4,即y=,又a0,由=1得a=1.【答案】131a1a222( 3)名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考

52、12.(苏州市2019届高三调研)过点P(,1)的直线l与圆C:(x-1)2+y2=4交于A,B两点,当ACB最小时,直线l的方程为 .【解析】当ACB最小时,弦AB的长最小,对应的弦心距最大,所以当CPAB时满足题意,由于kCP=-2,所以kAB=,直线l的方程为2x-4y+3=0.【答案】2x-4y+3=01212名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考13.在平面直角坐标系xOy中,知圆O:x2+y2=64,圆O1与圆O相交,圆心为O1(9,0),且圆O1上的点与圆O上的点之间的最大间隔为21.(1)求圆O1的规范方程;(2)过定点P(a,b)作动直线l与圆O,圆

53、O1都相交,且直线l被圆O,圆O1截得的弦长分别为d,d1.假设d与d1的比值总等于同一常数,求点P的坐标及的值.【解析】(1)设圆O1的半径为r,由题设,得9+8+r=21,所以r=4.所以O1的规范方程为(x-9)2+y2=16.(2)当直线l的斜率存在时,设直线l为y-b=k(x-a),即y-kx+ka-b=0.三、解答题名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考那么O,O1到直线l的间隔分别为h=,h1=,从而d=2,d1=2.由=,得64-=216-,整理得64-a2-162+2(a-9)2k2+2ba-2(a-9)k+64-b2-2(16-b2)=0.由题意,

54、上式对于恣意实数k恒成立,所以 2|1kabk2| 9|1kkabk22()641kabk22( 9)161kkabk1dd22()1kabk22( 9)1kkabk222222226416(9)0,2 (9)0,64(16)0.a ab a abb名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考由2ba-2(a-9)=0,得b=0或a-2(a-9)=0.假设b=0,那么64-162=0,解得=2(舍去负值),从而a=6或18,所以=2,点P(6,0)或P(18,0).假设a-2(a-9)=0,显然a=9不满足,从而2=,所以3a2-43a+192=0.但=432-43192=

55、-4550,因此该方程无实数根,舍去.当点P的坐标为(6,0)时,假设直线l的斜率不存在,此时d=4,d1=2,9aa77名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考所以=2,也满足.综上所述,满足题意的=2,点P有2个,坐标分别为(6,0)和(18,0).1dd名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考1.抛物线y=-8x2的焦点坐标为( )(A)(-,0). (B)(,0).(C)(0,-). (D)(0,).【解析】抛物线y=-8x2可化为x2=-y,焦点在y轴上,开口向下,焦点为(0,-).【答案】C13213213213218132限时训练卷

56、(二)一、选择题名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考2.从抛物线y2=4x上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,那么MPF的面积为( )(A)5. (B)10.(C)20. (D).【解析】易知F(1,0),P(4,4),故MPF的面积为10.【答案】B15名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考3.(湛江市2019年普通高考测试题二)设F是双曲线-=1的左焦点,A(1,4),P是双曲线右支上的动点,那么|PF|+|PA|的最小值为( )(A)5. (B)5+4.(C)7. (D)9.【解析】记右焦点为F1

57、(4,0),|PF|+|PA|=4+|PF1|+|PA|4+|AF1|=9.【答案】D24x212y3名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考4.准线方程为x=-4的抛物线y2=2px(p0)上一点M(1,m)到其焦点的距离( )(A)2. (B)3.(C)4. (D)5.【解析】由准线方程为x=-4得p=8,所以间隔为1+=5.【答案】D2p名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考5.方程+=1表示双曲线,那么k的取值范围为( )(A)(10,+).(B)(-,-5).(C)(-5,10).(D)(-,-5)(10,+).【解析】由(10-k)

58、(5+k)0,所以k10或k0,b0)的一个焦点到一条渐近线的间隔等于焦距的,那么该双曲线的渐近线方程是( )(A)x2y=0. (B)2xy=0.(C)xy=0. (D)xy=0.【解析】双曲线-=1(a0,b0)的一个焦点到一条渐近线的距离为b,=,因此b=c,a=c,=,因此其渐近线方程为xy=0.22xa22yb143322xa22yb2bc141222cb32ba333【答案】C名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考8.知点P(x,y)的坐标满足+=10,那么点P所在曲线的离心率为( )(A). (B).(C). (D).【解析】设F1(0,0),F2(-4

59、,-4),|F1F2|=4,|PF1|+|PF2|=104=|F1F2|,所以P点的轨迹是以F1、F2为焦点且长轴长为10的椭圆,e=.【答案】D22xy22(4)(4)xy82525252 25224 2102 25名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考9.(2019年长春市高中毕业班第一次调研)设e1、e2分别为具有公共焦点F1、F2的椭圆和双曲线的离心率,P是两曲线的一个公共点,且满足|+|=|,那么的值为( )(A). (B)2.(C). (D)1.【解析】设|PF1|=m,|PF2|=n,|F1F2|=2c,无妨设mn.由|+|=|知,F1PF2=90,那么

60、m2+n2=4c2,e1=,e2=,+=2,=.1PF2PF12F F1 22212e eee2221PF2PF12F F2cmn2cmn211e221e2222()4mnc1 22212e eee22【答案】A名师诊断名师诊断专案突破专案突破对点集训对点集训决胜高考决胜高考二、填空题10.(苏州市2019届高三调研)与双曲线-=1有公共的渐近线,且经过点A(-3,2)的双曲线方程是 .【解析】设所求双曲线的方程为-=(0),又过点A(-3,2),所以-=,所以=,所以所求双曲线方程为-=1.【答案】-=129x216y329x216y399121614249x24y249x24y名师诊断名师

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论