华中师范大学数学分析期末考试试习题_第1页
华中师范大学数学分析期末考试试习题_第2页
华中师范大学数学分析期末考试试习题_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数学分析期末考试试题一、叙述题:(每小题6分,共18分)1、 牛顿-莱不尼兹公式2、 收敛的cauchy收敛原理3、 全微分二、 计算题:(每小题8分,共32分)1、2、求由曲线和围成的图形的面积和该图形绕x轴旋转而成的几何体的体积。3、求的收敛半径和收敛域,并求和4、已知 ,求 三、(每小题10分,共30分)1、写出判别正项级数敛散性常用的三种方法并判别级数 2、讨论反常积分的敛散性3、讨论函数列的一致收敛性四、证明题(每小题10分,共20分)1、设,证明发散2、证明函数 在(0,0)点连续且可偏导,但它在该点不可微。,参考答案一、1、设在连续,是在上的一个原函数,则成立2、使得,成立3、设

2、为开集,是定义在上的二元函数,为中的一定点,若存在只与点有关而与无关的常数A和B,使得则称函数f在点处是可微的,并称为在点处的全微分二、1、分子和分母同时求导(8分)2、 、两曲线的交点为(0,0),(1,1)(2分)所求的面积为:(3分)所求的体积为:(3分)3、 解:设,收敛半径为1,收敛域-1,1(2分)(3分)x=0级数为0,x=1,级数为1,x=-1,级数为1-2ln2(3分)4、解: =(3分)(5分)三、1、解、有比较判别法,Cauchy,DAlembert,Raabe判别法等(应写出具体的内容4分)(4分)由DAlembert判别法知级数收敛(1分)2、解:(2分),对,由于故p0时收敛(4分);,由于(4分)故对一切的p收敛,综上所述p0,积分收敛资料个人收集整理,勿做商业用途3、解:收敛于(4分)所以函数列一致收敛性(6分)四、证明题(每小题10分,共20分)1、证明:(6分)发散,由比较判别法知级数发散(4分)2、证明:(4分)=0所以函数在(0,0)点连续,(3分)又,存在切等于0,(4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论