版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选 例1:如图,ABC是等腰直角三角形,BAC=90°,BD平分ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。思路分析:1)题意分析:本题考查等腰三角形的三线合肯定理的应用2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又由于有BD平分ABC的条件,可以和等腰三角形的三线合肯定理结合起来。解答过程:证明:延长BA,CE交于点F,在BEF和BEC中,1=2,BE=BE,BEF=BEC=90°,BEFBEC,EF=EC,从而CF=2CE。又1+F=3+F=90°,故1=3。在ABD和ACF中,1=3,AB=AC,BA
2、D=CAF=90°,ABDACF,BD=CF,BD=2CE。解题后的思考:等腰三角形“三线合一”性质的逆命题在添加帮助线中的应用不但可以提高解题的力量,而且还加强了相关学问点和不同学问领域的联系,为同学们开拓了一个宽敞的探究空间;并且在添加帮助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。 (2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。例2:如图,已知ABC中,AD是BAC的平分线,AD又是BC边上的中线。求证:ABC是等腰三角形。 思路分析:1)题意分析:本题考查全等三角形常见帮助线
3、的学问。2)解题思路:在证明三角形的问题中特殊要留意题目中消灭的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。解答过程: 证明:延长AD到E,使DE=AD,连接BE。又由于AD是BC边上的中线,BD=DC又BDE=CDABEDCAD,故EB=AC,E=2,AD是BAC的平分线1=2,1=E,AB=EB,从而AB=AC,即ABC是等腰三角形。解题后的思考:题目中假如消灭了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。 (3)遇到角平分
4、线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考学问点经常是角平分线的性质定理或逆定理。例3:已知,如图,AC平分BAD,CD=CB,AB>AD。求证:B+ADC=180°。思路分析:1)题意分析:本题考查角平分线定理的应用。2)解题思路:由于AC是BAD的平分线,所以可过点C作BAD的两边的垂线,构造直角三角形,通过证明三角形全等解决问题。解答过程:证明:作CEAB于E,CFAD于F。AC平分BAD,CE=CF。在RtCBE和RtCDF中,CE=CF,CB=CD,RtCBERtCDF,B=CDF,CDF+ADC=180°
5、,B+ADC=180°。解题后的思考:关于角平行线的问题,常用两种帮助线;见中点即联想到中位线。 (4)过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”例4:如图,ABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF交BC于D,若EB=CF。 求证:DE=DF。思路分析:1)题意分析: 本题考查全等三角形常见帮助线的学问:作平行线。2)解题思路:由于DE、DF所在的两个三角形DEB与DFC不行能全等,又知EB=CF,所以需通过添加帮助线进行相等线段的等量代换:过E作EG/CF,构造
6、中心对称型全等三角形,再利用等腰三角形的性质,使问题得以解决。解答过程:证明:过E作EG/AC交BC于G,则EGB=ACB,又AB=AC,B=ACB,B=EGB,EGD=DCF,EB=EG=CF,EDB=CDF,DGEDCF,DE=DF。解题后的思考:此题的帮助线还可以有以下几种作法:例5:ABC中,BAC=60°,C=40°,AP平分BAC交BC于P,BQ平分ABC交AC于Q,求证:AB+BP=BQ+AQ。思路分析:1)题意分析:本题考查全等三角形常见帮助线的学问:作平行线。2)解题思路:本题要证明的是AB+BP=BQ+AQ。形势较为简单,我们可以通过转化的思想把左式和右
7、式分别转化为几条相等线段的和即可得证。可过O作BC的平行线。得ADOAQO。得到OD=OQ,AD=AQ,只要再证出BD=OD就可以了。解答过程:证明:如图(1),过O作ODBC交AB于D,ADO=ABC=180°60°40°=80°,又AQO=C+QBC=80°, ADO=AQO, 又DAO=QAO,OA=AO, ADOAQO, OD=OQ,AD=AQ,
8、; 又ODBP, PBO=DOB, 又PBO=DBO, DBO=DOB,BD=OD,又BPA=C+PAC=70°, BOP=OBA+BAO=70°,BOP=BPO,BP=OB, AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。
9、60; 解题后的思考:(1)本题也可以在AB上截取AD=AQ,连OD,构造全等三角形,即“截长法”。(2)本题利用“平行法”的解法也较多,举例如下:如图(2),过O作ODBC交AC于D,则ADOABO从而得以解决。如图(5),过P作PDBQ交AC于D,则ABPADP从而得以解决。小结:通过一题的多种帮助线添加方法,体会添加帮助线的目的在于构造全等三角形。而不同的添加方法实际是从不同途径来实现线段的转移的,体会构造的全等三角形在转移
10、线段中的作用。从变换的观点可以看到,不论是作平行线还是倍长中线,实质都是对三角形作了一个以中点为旋转中心的旋转变换构造了全等三角形。 (5)截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。例6:如图甲,ADBC,点E在线段AB上,ADE=CDE,DCE=ECB。求证:CD=AD+BC。思路分析:1)题意分析: 本题考查全等三角形常见帮助线的学问:截长法或补短法。2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长
11、”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。解答过程:证明:在CD上截取CF=BC,如图乙FCEBCE(SAS),2=1。又ADBC,ADC+BCD=180°,DCE+CDE=90°,2+3=90°,1+4=90°,3=4。在FDE与ADE中,FDEADE(ASA),DF=DA,CD=DF+CF,CD=AD+BC。试题答案1、分析:由于平角等于180°,因而应考虑把两个不在一起的角通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长法或补短法
12、”来实现。证明:过点D作DE垂直BA的延长线于点E,作DFBC于点F,如图1-2RtADERtCDF(HL),DAE=DCF。又BAD+DAE=180°,BAD+DCF=180°,即BAD+BCD=180°2、分析:与1相类似,证两个角的和是180°,可把它们移到一起,让它们成为邻补角,即证明BCP=EAP,因而此题适用“补短”进行全等三角形的构造。证明:过点P作PE垂直BA的延长线于点E,如图2-2RtAPERtCPD(SAS),PAE=PCD又BAP+PAE=180°。BAP+BCP=180° 3、分析:从结论分析,“截
13、长”或“补短”都可实现问题的转化,即延长AC至E使CE=CD,或在AB上截取AF=AC。证明:方法一(补短法)延长AC到E,使DC=CE,则CDECED,如图3-2AFDACD(SAS),DF=DC,AFDACD。又ACB2B,FDBB,FD=FB。AB=AF+FB=AC+FD,AB=AC+CD。4、证明:(方法一)将DE两边延长分别交AB、AC于M、N,在AMN中,AM+AN>MD+DE+NE; 在BDM中,MB+MD>BD; &
14、#160; 在CEN中,CN+NE>CE; 由+得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CEAB+AC>BD+DE+EC(方法二:图4-2)延长BD交AC于F,延长CE交BF于G,在ABF、GFC和GDE中有:AB+AF>BD+DG+GF GF+FC>GE+CE &
15、#160; DG+GE>DE 由+得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DEAB+AC>BD+DE+EC。5、分析:要证AB+AC>2AD,由图想到:AB+BD>AD,AC+CD>AD,所以有AB+AC+BD+CD>AD+AD=2AD,左边比
16、要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去ACDEBD(SAS)BE=CA(全等三角形对应边相等)在ABE中有:AB+BE>AE(三角形两边之和大于第三边)AB+AC>2AD。6、分析:欲证AC=BF,只需证AC、BF所在两个三角形全等,明显图中没有含有AC、BF的两个全等三角形,而依据题目条件去构造两个含有AC、BF的全等三角形也并不简洁。这时我们想到在同一个三角形中等角对等边,能够把这两条线段转移到同一个三角形中,只要说明转移到同一个三角形以后的这两条线段,所对的角相等即可。思路一、以三角形ADC为基础三角形,转移线段AC,使AC、BF在三角形BFH中方法一:延长AD到H,使得DH=AD,连结BH,证明ADC和HDB全等,得AC=BH。通过证明H=BFH,得到BF=BH。 ADCHDB(SAS) AC=BH, H=HAC EA=EF HAE=AFE又 BFH=AFEBH=BFBF=AC方法二:过B点作BH平行AC,与AD的延长线相交于点H,证明ADC和HDB全等即可。小结:对于含有中点的问题,通过“倍长中线” 可以得到两个全等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年甘肃电器科学研究院聘用人员招聘备考题库完整答案详解
- 2025年齐齐哈尔市总工会工会社会工作者招聘39人笔试重点题库及答案解析
- 2025广东东莞市公安局沙田分局招聘警务辅助人员11人(第8期)考试重点试题及答案解析
- 2025四川德阳市广安发展工程建设有限公司第二批项目合同制员工招聘补充说明笔试重点题库及答案解析
- 2025年金华永康市科学技术局工作人员招聘1人备考笔试试题及答案解析
- 2026年昆明卫生职业学院春季学期教师招聘(4人)备考核心题库及答案解析
- 《CB 3670-1994中国船舶工业总公司企事业单位名称代码》专题研究报告
- 2025中国科学院认知科学与心理健康全国重点实验室博士后及研究助理招聘2人笔试重点题库及答案解析
- 2025湖北随州市中心医院卫生专业技术人员专项招聘21人考试重点题库及答案解析
- 2025中国瑞林工程技术股份有限公司市场化选聘法务总监1人笔试重点题库及答案解析
- 传播学研究方法 课件全套 ch1-导论-传播学研究方法的发展历程 -ch18-大数据的分析与可视化-用图表勾勒网络关系
- MT/T 1218-2024煤矿动压巷道水力压裂切顶卸压施工技术规范
- 中医推拿知识培训课件
- 沃柑种植合同协议书
- 河南省许昌市2024-2025学年八年级上学期数学期末测评卷(含答案与解析)
- 2024-2025学年四川省成都市高一上学期期末教学质量监测英语试题(解析版)
- 人生中的转折点主题班会
- 陈景润数学家人物介绍
- 【浙教版】一年级上册《劳动》《水培植物我养护》
- 2024秋期国家开放大学本科《国际经济法》一平台在线形考(形考任务1至4)试题及答案
- 医学伦理学(山东中医药大学)智慧树知到答案2024年山东中医药大学
评论
0/150
提交评论