版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2017年江苏省盐城市阜宁县中考数学一模试卷一、选择题(本大题共 6小题,每小题3分,共18分)1. 一L的绝对值等于()2A. - 2 B. 2C.4 D.=222 .若等腰三角形中有两边长分别为3和7,则这个三角形的周长为()A. 13B. 17C. 10 或 13 D. 13 或 173 .化简(-a2) 3的结果是()A. - a5 B. a5C. - a6 D. a64 .函数y=d宣一 1的自变量x的取值范围是()A. x> 1 B . x< 1 C . x> 1 D . x< 15 .已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A. 3B
2、. 4C. 5D. 66 .在平面直角坐标系中,若直线 y=ax - b经过第一、二、三象限,则直线 y=bx - a不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限、填空题(本大题共 10小题,每小题3分,共30分) 7.8 .某市今年参加中考的学生大约为51000人,将数51000用科学记数法可以表示为9 .关于x的不等式组的解集为1vx<4,则a的值为10 .因式分解:a3 - 9a=. q g11 .方程一-一不二0的解是12 .已知:一元二次方程 x2-6x+c=0有一个根为2,则另一根为 .13 .如图,四边形 ABC虚。的内接四边形,若/ C=140 ,则
3、/ BOD二度.2714.如图,在 RtABC中,/ACB=90,点D, E, F分别为AB, AC BC的中点,若 EF=4,则CD的长为15.如图,在平面直角坐标系中,点轴分别交于A, B,点M是直线AB上的一个动点,则 PM长的最小值为16.如图,在矩形 ABC邛,AB=3点P是直线AD上一点,若满足 PBC是等腰三角形的点P有且只有3个,则AD的长为.a D三、解答题(本大题共 11小题,共102分)17. ( 6 分)计算 tan45 ° -18. (8分)先化简,再求值:19. ( 8分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他
4、们按体重(均为整数,单位:kg)分成五组(A: 39.546.5 ; B: 46.553.5 ;C: 53.560.5; D: 60.567.5; E: 67.574.5 ),并依据统计数据绘制了如下两幅尚不(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中 D组的圆心角是请你估计该校初三年级体重超过60kg的学生大约有多少名?(3)AB=AC=AD 且/ C=2Z D,求证 AD/ BC.21. ( 8分)一只不透明的袋子中装有1个白球、1个蓝球和2个红球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,摸出红球的概率为(2)从袋中随机摸出1个球(
5、不放回)后,再从袋中余下的3个球中随机摸出1个球.求两次摸到的球颜色不相同的概率.22. ( 10分)如图,一海伦位于灯塔 P的西南方向,距离灯塔40回海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60。方向上的B处,求航程AB的值(结果保留根号)23. (10 分)如图,四边形 ABCD4 / A=/ABC=90 , AD=1, BC=3, E是边 CD的中点,连接BE并延长与AD的延长线相交于点 F.(1)求证:四边形 BDFC是平行四边形;(2)若 BC皿等腰三角形,求四边形 BDFC的面积.24. ( 10分)如图,在平面直角坐标系中,已知点 A (8, 1) , B
6、(0, - 3),反比例函数(x>0)的图象经过点A,过点(t,0)且平行于y轴的直线(0vtv8),与反比例函数的图象交于点 M与直线AB交于点N.(1)当t=2时,求 BMN面积;(2)若MALAB,求t的值.25. ( 10分)某网店打出促销广告:最潮新款服装30件,每彳牛售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件 200元,设顾客一次性购买服装 x件时,该网店从中获禾1 y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?2
7、6. (12分)已知:O。上两个定点 A, B和两个动点 C, D, AC与BD交于点E.(1)如图 1,求证:EA?EC=EB?ED(2)如图2,若箴岳,AD是。的直径,求证:AD?AC=2BD?BC(3)如图3,若ACL BD, BC=3求点。到弦AD的距离.ABC讯正方形DEFG勺边长分别为2a ,27. ( 12分)如图,在平面直角坐标系中,正方形 2b,点A, D, G在y轴上,坐标原点 。为AD的中点,抛物线 y=mq过C, F两点,连接 FD并延长交抛物线于点M(1)若a=1,求m和b的值;(2)求的值; a(3)判断以FM为直径的圆与 AB所在直线的位置关系,并说明理由.201
8、7年江苏省盐城市阜宁县中考数学一模试卷参考答案与试题解析、选择题(本大题共 6小题,每小题3分,共18分)1. 一L的绝对值等于()2A. - 2 B. 2C. - D).22【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝 对值定义去掉这个绝对值的符号.故选D.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为()A. 13 B. 17C. 10 或 13 D. 13 或 17【考点】KH等腰三角形
9、的性质;K6:三角形三边关系.【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为 3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若3为腰长,7为底边长,由于3+3V7,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为 7+7+3=17.故选B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题
10、意的舍去.3 .化简(-a2) 3的结果是()A.-a5B.a5C.-a6D.a6【考点】47:哥的乘方与积的乘方.【分析】根据积的乘方,把每一个因式分别乘方,再把所得的哥相乘;哥的乘方,底数不变指数相乘,计算后直接选取答案.【解答】 解:(a2) 3= ( 1) 3? (a2) 3=-a6.故选C.【点评】本题考查积的乘方的性质和哥的乘方的性质,熟练掌握性质是解题的关键.4 .函数y=VH的自变量x的取值范围是()A. x>1 B. xv 1 C. x>1 D. x< 1【考点】E4:函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
11、【解答】解:由题意得x- 1>0,解得x> 1.故选C.【点评】考查求函数自变量的取值;用到的知识点为:二次根式的被开方数为非负数.5 .已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A. 3B. 4C. 5D. 6【考点】L3:多边形内角与外角.【分析】设多边形的边数为 n,则根据多边形的内角和公式与多边形的外角和为360。,列方程解答.【解答】 解:设多边形的边数为 n,根据题意列方程得,(n-2) ?180° =360° ,n- 2=2, n=4.故选B.【点评】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和公式并熟悉多边形的
12、外角和为360° .6 .在平面直角坐标系中,若直线y=ax - b经过第一、二、三象限,则直线 y=bx - a不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】F7: 一次函数图象与系数的关系.【分析】根据图象在坐标平面内的位置关系确定a, b的取值范围,从而求解.【解答】 解:由一次函数y=ax-b的图象经过第一、二、三象限,,.a>0, bv 0,直线y=bx-a经过第二、三、四象限,直线y=bx - a不经过第一象限,故选A.【点评】 本题考查一次函数图象与系数的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k&
13、gt;0时,直线必经过一、三象限.k<0时,直线必经过二、 四象限.b> 0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负 半轴相交.二、填空题(本大题共 10小题,每小题3分,共30分)7. (- 2017) 0= 1 .【考点】6E:零指数哥.【分析】根据非零的零次哥等于 1,可得答案.【解答】 解:(-2017) 0=1,故答案为:1 .【点评】本题考查了零指数哥,利用非零的零次哥等于1是解题关键.8.某市今年参加中考的学生大约为51000人,将数51000用科学记数法可以表示为5.1X104.【考点】1I:科学记数法一表示较大的数.【分析】 科
14、学记数法的表示形式为 axion的形式,其中iw|a| <10, n为整数.确定 n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值v 1时,n是负数.【解答】 解:51000=5.1 x 104.故答案为:5.1X104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为aX10n的形式,其中1<|a| <10, n为整数,表示时关键要正确确定a的值以及n的值.9 .关于x的不等式组 <、的解集为1vx<4,则a的值为 5 .ar 31【考点】CB解一元一次不等式组.【分析】分
15、贝求出不等式组中两个不等式的解集,根据题意得到关于a的方程,解之可得.【解答】 解:解不等式2x+1>3,得:x>1,解不等式a-x>1,得:x< a - 1,不等式组的解集为 1vxv4,1- a - 1=4,即 a=5,故答案为:5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10 .因式分解: a3 - 9a= a (a+3) ( a - 3).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】 解:原式二a
16、 (a2-9)=a ( a+3) ( a - 3),故答案为:a (a+3) (a- 3).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11 .方程2-=0的解是 x=6 .X X-2【考点】B3:解分式方程.【分析】先去分母,然后求出整式方程的解,继而代入检验即可得出方程的根.【解答】 解:去分母得:3 (x-2) - 2x=0,去括号得:3x - 6 - 2x=0,整理得:x=6,经检验得x=6是方程的根.故答案为:x=6 .【点评】此题考查了解分式方程的知识,注意分式方程要化为整式方程求解,求得结果后定要检验.12.已知:一兀二次方程x2-6x+
17、c=0有一个根为2,则另一根为4 .【考点】AB:根与系数的关系.【分析】设方程另一根为t ,根据根与系数的关系得到2+t=6 ,然后解一次方程即可.【解答】解:设方程另一根为 t,根据题意得2+t=6 ,解得t=4 .故答案为4.【点评】本题考查了一元二次方程ax2+bx+c=0 (aw 0)的根与系数的关系:若方程的两根为xi, x2,贝U xi+x2=,xi?x2. 邕 aBOD= 80 度.13.如图,四边形 ABC虚。的内接四边形,若/ C=140 ,则/【考点】M6圆内接四边形的性质.【分析】先根据圆内接四边形的性质得到/ A=180° - /C=50,然后根据圆周角定理
18、求/BOD【解答】 解:.一/ A+/ C=180 ,,/A=180° - 140° =40° , ./ BOD=2A=80° .故答案为80.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90。的圆周角所对的弦是直径.也考查了圆内接四边形的性质.14.如图,在 RtABC中,/ACB=90,点 D, E, F 分别为 AB, AC BC的中点,若 EF=4,则CD的长为 4 .【考点】KX三角形中位线定理;KP:直角三角形斜边上的中线.【分析】 先根据E
19、, F分别为AC, BC的中点得出EF是 ABC的中位线,故可得出 AB的长, 再由直角三角形的性质即可得出结论.【解答】 解:: E, F分别为AC, BC的中点,EF=4, .EF是 ABC的中位线, .AB=2EF=8 点D是AB的中点, .Cd"-AB=4.故答案为:4.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.15.如图,在平面直角坐标系中,点P的坐标为(0, 2/3),直线 y券x-6与 x轴,y 轴分别交于A, B,点M是直线AB上的一个动点,则 PM长的最小值为 5:-【考点】F8: 一次函数图象上点的
20、坐标特征;J4:垂线段最短.【分析】当PM!直线AB时,此时PMK最小值,禾1J用直线 yglx-求出点A与B的坐标,从而可知 OA OB的长度,然后证明 AO BMF?利用相似三角形的性质即可求出PM的值.【解答】 解:当PML直线AB时,此时PMK最小值,令 x=o 代入 y=-x -5/3,-y=-3,-OB=J3,令y=0代入y=Wgx -求,3 x=3,.OA=3,在 RtAOB中,由勾股定理可知: AB=2反,- P (0, 2日),BP=2. + :;=3 :, / OBAh MBP / AOBW PMB=90 ,.AO+ BMP.PH 0A "BP = AB9PM=一
21、故答案为:【点评】 本题考查垂线段最短,解题的关键是求出OA OB AB的长度,从而可求出答案.16 .如图,在矩形 ABC邛,AB=3点P是直线AD上一点,若满足 PBC是等腰三角形的点P有且只有3个,则AD的长为 3或271金D审1【考点】LB:矩形的性质;KH等腰三角形的性质.【分析】要求直线AD上满足 PBC是等腰三角形的点 P有且只有3个时的AB长,则需要分 类讨论:当 AB=AD寸;当 AB< AD时,当 AB> AD时.【解答】 解:如图,当 AB=AD寸满足 PBC是等腰三角形的点 P有且只有3个, P1BC, P2BC是等腰直角三角形, P3BC是等腰直角三角形(
22、P3B=PC),则 AB=AD=3当AB< AD且满足 PBC是等腰三角形的点 P有且只有3个时,如图,5C易知心是AD的中点,BC=BP=BR=CP=CfP,此时易知 P2BC是等边三角形,在 RtAB技中,AB=- / AB技=30° , . .AP2=AB?tan30° = JI,BC=AD=2AP=2 -;当AB> AD时,直线AD上只有一个点 P满足 PBC是等腰三角形.故答案为:3或27乐【点评】本题考查矩形的性质, 等腰三角形的性质等知识,解题的关键是理解题意,属于中考常考题型.三、解答题(本大题共 11小题,共102分)17 .计算tan45 &
23、#176; -(冬 -可(-3) ? 一注目 a【考点】2C:实数的运算;6F:负整数指数哥;T5:特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,负整数指数哥,以及平方根、立方根定义计算即可得到结果.【解答】 解:原式=1 3+3+2=3.【点评】此题考查了实数的运算,负整数指数哥,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.先化简,再求值:3-a.2,其中 a=73- 3.【考点】6D:分式的化简求值.【分析】先算括号里面的,再算除法,最后把a的值代入进行计算即可.【解答】解:原式=7方三一二2(a-2)a-24?代入,【点评】本题考查的是分式的化简求值,分式中的
24、一些特殊求值题并非是一味的化简, 求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这 些数学解题思想对于解题技巧的丰富与提高有一定帮助.19.某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.546.5 ;B:46.553.5 ;C:53.560.5 ; D: 60.567.5 ; E: 67.574.5 ),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2) C组学生的频率为0.32 ,在扇形统计图中
25、D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【考点】V8:频数(率)分布直方图;V5:用样本估计总体; VB:扇形统计图.【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是 4+8%=50 B组的频数=50-4- 16-10-8=12, 补全频数分布直方图,如图:(2) C组学生的频率是0.32; D组的圆心角=里><360"二设'(3)样本中体重超过 6
26、0kg的学生是10+8=18人,1 0该校初三年级体重超过 60kg的学生=X100%X 100g36c人,故答案为:(1) 50; (2) 0.32; 72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.20.如图,已知 AB=AC=AD且/ C=2/ D,求证 AD/ BC.【考点】J9:平行线的判定.【分析】 欲证明AD/ BC,只需推知/ CBDW D即可.【解答】证明:AB=AC=AD/ C=Z ABC / D=Z ABD / C=2/ D,/ ABC=2 ABD/ ABD=/ CBD=/ D,.AD/ BC.【点评】本题考查了平行线的判定.解答此类要判定
27、两直线平行的题,可围绕截线找同位角、 内错角和同旁内角.21.一只不透明的袋子中装有 1个白球、1个蓝球和2个红球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,摸出红球的概率为上;(2)从袋中随机摸出1个球(不放回)后,再从袋中余下的3个球中随机摸出1个球.求两次摸到的球颜色不相同的概率.【考点】X6:列表法与树状图法.【分析】(1)直接利用概率公式求出摸出红球的概率;(2)利用树状图得出所有符合题意的情况,进而理概率公式求出即可.【解答】 解:(1)从袋中随机摸出1个球,摸出红球的概率为: 故答案为:(2)如图所示:白蓝红1红2/1小小,篮红1红2白红1红2白蓝红2白雷红1所有的可能有
28、12种,符合题意的有10种,故两次摸到的球颜色不相同的概率为:三-=412 6【点评】此题主要考查了树状图法求概率,根据题意利用树状图得出所有情况是解题关键.22. (10分)(2015?南通)如图,一海伦位于灯塔P的西南方向,距离灯塔 40j日海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60。方向上的B处,求航程【考点】TB:解直角三角形的应用-方向角问题.【分析】 过P作PC垂直于AB,在直角三角形 ACP中,利用锐角三角函数定义求出AC与PC的长,在直角三角形BCP中,利用锐角三角函数定义求出CB的长,由AC+C球出AB的长即可.【解答】解:过在 RtACP中, .AC
29、=AP?sin45,一 工一 2BC在 RtBCP中,/ BPC=60 , tan / BPC券,L LBC=PC?tan60 =40 向(海里),P作PCX AB于点C,ACPA=40/海里,/ APC=45 , sin /APC需,cos/=40j9X =40PC=AP?cos4 5 =40X =40【点评】此题考查了解直角三角形的应用-方向角问题,熟练掌握锐角三角函数定义是解本题的关键.23. (10 分)(2015?宿迁)如图,四边形 ABCM, / A=Z ABC=90 , AD=1, BC=3 E是边CD的中点,连接 BE并延长与AD的延长线相交于点 F.(1)求证:四边形 BDF
30、C是平行四边形;(2)若 BC皿等腰三角形,求四边形BDFC的面积.【考点】L7:平行四边形的判定与性质;KH等腰三角形的性质.【分析】(1)根据同旁内角互补两直线平行求出 BC/ AD,再根据两直线平行,内错角相等 可得/ CBE=/ DFE,然后利用“角角边”证明 BEC和FCDr等,根据全等三角形对应边相 等可得BE=EF然后利用对角线互相平分的四边形是平行四边形证明即可;(2)分BC=BW,利用勾股定理列式求出 AB,然后利用平行四边形的面积公式列式计算即可得解;BC=CW,过点C作CGLAF于G,判断出四边形 AGCB1矩形,再根据矩形的对边相等可得 AG=BC=3然后求出DG=2利
31、用勾股定理列式求出CG然后利用平行四边形的面积列式计算即可得解;BD=CDbf, BC边上的中线应该与 BC垂直,从而得到BC=2AD=2矛盾.【解答】(1)证明:.一/ A=Z ABC=90 , BC/ AD, ./ CBE=/ DFE,在 BECA FED中,ZCBE=ZDFE /BEC=/FED, CEDE . BEC FED .BE=FE又 E是边CD的中点,.CE=DE四边形BDFB平行四边形;(2)BC=BD=3寸,由勾股定理得, AB而正!/正/早二4回,所以,四边形 BDFC勺面积=3X 2/2=6;BC=CD=3寸,过点C作CGL AF于G,贝U四边形 AGC更矩形,所以,A
32、G=BC=3 所以,DG=AG AD=3- 1=2,由勾股定理得,cg=/cd24)g2=V32 =2=,所以,四边形 BDFC勺面积=3X 75=375;BD=CD寸,BC边上的中线应该与 BC垂直,从而得到 BC=2AD=2矛盾,此时不成立;综上所述,四边形 BDFC勺面积是伙用或3/5.【点评】本题考查了平行四边形的判定与性质,等腰三角形的性质, 全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.24. (10分)(2017?阜宁县一模)如图,在平面直角坐标系中,已知点 A (8, 1) , B ( 0, -3),反比例函数 y=,(x>0)的图
33、象经过点 A,过点(t, 0)且平行于y轴的直线(0 vtv8),与反比例函数的图象交于点 M与直线AB交于点N.(1)当t=2时,求 BMN面积;【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法求出反比例函数和直线AB的解析式,利用t=2得出M和N的坐标,进而求出 BMN勺面积;(2)求出直线AM的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组求出M的坐标,即可得出结果.【解答】 解:(1)把点A (8, 1)代入反比例函数 y二(x>0)得: gk=lX8=8, y=,设直线AB的解析式为:y=ax+b,根据题意得::一,二-3解得:a=
34、g, b=- 3, z直线AB的解析式为:y=x - 3;当 t=2 时,M (2, 4) , N (2, - 2),则 MN=6. BMN勺面积=yX 6X 2=6;(2) MAL AB,设直线 MA的解析式为:y= - 2x+c,把点A (8, 1)代入得:c=17,直线AM的解析式为:y= -2x+17,尸-2戈+17解方程组g ,得:K:,M的坐标为(y, 16),求反比例函数与一次函数的交点坐【点评】本题考查了反比例函数与一次函数的交点问题:标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两 者无交点.也考查了用待定系数法求反比例函数和一次函数的解析式.
35、25. (10分)(2015?南通)某网店打出促销广告: 最潮新款服装30件,每件售价300元.若 一次性购买不超过10件时,售价不变;若一次性购买超过 10件时,每多买1件,所买的每 件服装的售价均降低 3元.已知该服装成本是每件 200元,设顾客一次性购买服装 x件时, 该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?【考点】HE二次函数的应用.【分析】(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.f3Q0il-200100x (0<
36、K10,且x为整数)【解答】解:1) y=-.,I 300-3(x-10)-200i=-3k H30x(10<x<30,且太为整数)(2)在 0W xW10 时,y=100x,当 x=10 时,y 有最大值 1000;在 10v xw 30 时,y=- 3x2+130x,2 , 一一,当x二21=时,y取得最大值,,x为整数,根据抛物线的对称性得x=22时,y有最大值1408.1408 >1000,,顾客一次购买22件时,该网站从中获利最多.【点评】 此题主要考查了二次函数的应用,根据题意得出y与x的函数关系是解题关键.26. (12分)(2017?阜宁县一模)已知:O。上两
37、个定点 A, B和两个动点 C, D, AC与BD交于点E.(1)如图 1,求证:EA?EC=EB?ED(2)如图2,若£百岳,AD是。的直径,求证:AD?AC=2BD?BC(3)如图3,若ACL BD, BC=3求点。到弦AD的距离.【考点】MR圆的综合题.【分析】(1)如图1,根据两角对应相等证明4 ABaDCE可得结论;(2)如图2,连接OB交AC于F,证明 AB匕 DAB列比例式,由垂径定理得:AF-AC,由等弧所对的弦相等得:AB=BC代入比例式可得结论;(3)如图3,作辅助线,构建直角三角形,根据三角形的中位线定理得:OG为4ADF的中位线,贝U OG=-DF,由/ ED
38、C吆ECD=90和/ FAD叱AFD=90 ,再由同弧所对的圆周角相等 得:/ EDC=FAD,所以定=而,求出BC=DF=3从而得结论.【解答】 证明:(1)如图1, BAC至CDB /AEB=/ DEC . ABa DCE,瓦里EC EDEA?EC=EB?E D(2)如图2,连接OB交AC于F,-.OB=OA/ ABF=Z BADAB=B c,/ BAF=Z BDA .ABD DAB.迪亶蛆AD' .AF?AD=AB?BD .屈工商,O是圆心, AFAC AB=BC1 AC?AD=BC?BDz.AD?AC=2BD?BC(3)如图3,连接AO延长交。O于F,连接DF,过O作OGLAD
39、于G,.AG=DG .AO=OF .OG为 ADF的中位线,.qg=Ldf,2. AC,BD, / EDC吆 ECD=90 , AF是。O的直径,/ADF=90 , ./ FAD吆 AFD=90 , / AFD叱 ECD / EDCh FAD,BC=F d,BC=DF=3 -OG=-,点O到弦AD的距离是固2【点评】本题是圆的综合题,难度适中,考查了圆周角定理、垂径定理、三角形相似的性质和判定、三角形的中位线定理,熟练掌握圆周角定理是关键,在圆中证明相似中, 常利用两 角对应相等证明两三角形相似,要熟练掌握.27. (12分)(2015?宿迁)如图,在平面直角坐标系中,正方形ABC的正方形DEFG勺边长分另1J为2a, 2b,点A, D, G在y轴上,坐标原点 。为AD的中点,抛物线y=m过C, F两点,连接FD并延长交抛物线于点 M.(1)若a=1,求m和b的值;(2)求的值; a(3)判断以FM
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年-2024年公司项目部负责人安全教育培训试题附答案【黄金题型】
- 立秋文化在新媒体的传播
- 《材料工程原理绪论》课件
- 《监督培训材料》课件
- 激光打标机打标软件与PLC通信稳定性的研究
- 部编版七年级历史下册期末复习专题课件2024版
- 云安全隐私保护机制-洞察分析
- 营养产业可持续发展-洞察分析
- 外观模式可维护性-洞察分析
- 稀有金属国际市场动态-洞察分析
- 栏杆百叶安装施工方案
- (高速公路)工程施工便道施工方案-
- 低压配电电源质量测试记录
- 安徽省水利工程质量检测和建筑材料试验服务收费标准
- 2022课程标准解读及学习心得:大单元教学的实践与思考
- OA协同办公系统运行管理规定
- 公安警察工作汇报PPT模板课件
- 某小区建筑节能保温工程监理实施细则
- 污水处理中常用的专业术语
- 石英砂过滤器说明书
- 外市电引入工程实施管理要求(重要)
评论
0/150
提交评论