高中数学 平面向量的坐标运算 新人教A必修PPT学习教案_第1页
高中数学 平面向量的坐标运算 新人教A必修PPT学习教案_第2页
高中数学 平面向量的坐标运算 新人教A必修PPT学习教案_第3页
高中数学 平面向量的坐标运算 新人教A必修PPT学习教案_第4页
高中数学 平面向量的坐标运算 新人教A必修PPT学习教案_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、会计学1高中数学高中数学 平面向量的坐标运算平面向量的坐标运算 新人教新人教A必修必修引入引入:1.1.平面内建立了直角坐标系平面内建立了直角坐标系, ,点点A A可以用什么来可以用什么来表示表示? ?2.2.平面向量是否也有类似的表示呢平面向量是否也有类似的表示呢? ?OxyA(a,b)aba第1页/共18页3.3.复习平面向量基本定理复习平面向量基本定理: :如果如果 e1 , e2是同一平面内的两个不共线的向量,是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量那么对于这一平面内的任一向量 a ,有且只有,有且只有一对实数一对实数 1 , 2 使得使得a= 1 e1+ 2 e2

2、.不共线的两向量不共线的两向量 e1 , e2 叫做这一平面内所叫做这一平面内所有向量的一组有向量的一组基底基底.什么叫平面的一组基底什么叫平面的一组基底? ?平面的基底有多少组平面的基底有多少组? ?无数组无数组第2页/共18页其中其中x叫做叫做a在在x轴上的轴上的坐标坐标,y叫做叫做a在在y轴上的轴上的坐坐标标.(1)(1)取基底取基底: : 与与x x轴方向轴方向,y,y轴方向相轴方向相同的两个单位向量同的两个单位向量i i、j j作为基底作为基底. .xyoija)y, x(a 式叫做向量的坐标表示式叫做向量的坐标表示. .注:每个向量都有唯一的坐标注:每个向量都有唯一的坐标. .(一

3、)平面向量坐标的概念(一)平面向量坐标的概念(2)(2) 任作一个向量任作一个向量a a,由平面向量基本定理,有且只由平面向量基本定理,有且只有一对实数有一对实数x x、y y,使得,使得a=xi+yj.a=xi+yj.我们把我们把(x,y)(x,y)叫做向量叫做向量a a的坐标,的坐标,记作记作得到实数对得到实数对: : 第3页/共18页例例1.用基底用基底 i , j 分别表示向量分别表示向量a,b,c,d,并求出它们的坐标并求出它们的坐标.-4 -3 -2 -1 1 2 3 4ABij12-2-1Oxyabcd 问问 1 :设设 的坐标与的坐标与 的坐标有何关系的坐标有何关系? ,aAB

4、 a AB、45323(2,3)ABij 23( 2,3)bij 23( 2, 3)cij 23(2, 3)dij a 的坐标等于AB的终边坐标减去起点坐标。第4页/共18页1122( ,), (,),A x yB xy 若若 则则AB 问问2:2:什么时候向量的坐标和点的坐标统一起来?什么时候向量的坐标和点的坐标统一起来? 问问 1 :设设 的坐标与的坐标与 的坐标有何关系的坐标有何关系? ,aAB a AB、问问3:3:相等向量的坐标相等向量的坐标有什么关系?有什么关系?1ABij1OxyaA1B1(x1,y1)(x2,y2)P(x,y)b2121(,)xx yy结论结论1 1:一个向量的

5、坐一个向量的坐标等于表示此向量的标等于表示此向量的有向线段终点的坐标有向线段终点的坐标减去始点的坐标。减去始点的坐标。第5页/共18页4321-1-2-3-2246ij),(yxP( , )OPxiy jx y 向量的坐标与点的坐标关系O向量向量 P(x ,y)一一 一一 对对 应应OP xiy j第6页/共18页小结小结: :对向量坐标表示的理解对向量坐标表示的理解: :(1)(1)任一平面向量都有唯一的坐标任一平面向量都有唯一的坐标; ;(2)(2)向量的坐标等于终点坐标减去起点坐标;向量的坐标等于终点坐标减去起点坐标;当向量的起点在原点时,向量终点的坐标即当向量的起点在原点时,向量终点的

6、坐标即为向量的坐标为向量的坐标. .(3)(3)相等的向量有相等的坐标相等的向量有相等的坐标. .),(),(2211yxbyxaba ,若.,),(),(21212211yyxxyxyx即则第7页/共18页练习练习: :在同一直角坐标系内画出下列向量在同一直角坐标系内画出下列向量. .(1)(1,2)a (2)( 1,2)b (1,2)A.xyoaxyo( 1,2)B .b第8页/共18页1122( ,),(,),( , ),ax ybxyab abax ya 问题: (1)已知 求 的坐标. (2)已知和实数求 的坐标.(二)平面向量的坐标运算:(二)平面向量的坐标运算: 1122(1)a

7、bx iy jx iy j1212(,)abxxyy同理得(2)(,)axiy jxiy jxy结论结论2 2:两个向量和与差的坐标分别等于这两个向:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差量相应坐标的和与差. .结论结论3 3:实数与向量数量积的坐标等于用这个实数:实数与向量数量积的坐标等于用这个实数乘原来向量的相应坐标乘原来向量的相应坐标. .1212xxiyyj1212(,)xxyy第9页/共18页 已知已知 ,求,求 的坐标的坐标. . ABOxyB(x2,y2)A(x1,y1)ABOBOA 结论结论1 1:一个向量的坐标等于表示此向量的有向一个向量的坐标等于表示此向量的

8、有向线段终点的坐标减去始点的坐标。线段终点的坐标减去始点的坐标。1122( ,), (,)A x yB xy从向量运算的角度从向量运算的角度2,211()( ,)x yx y2121(,)xx yy第10页/共18页2 (2,1), ( 3,4), , 34 abab abab 例例 :已已知知求求的的坐坐标标. .(2,1)( 3,4)( 1,5)ab 解解:(2,1)( 3,4)(5, 3)ab 3 4 3(2,1)4( 3,4)(6,3)( 12,16)ab ( 6,19) 第11页/共18页例例3已知三个力已知三个力1F (3, 4), 2F(2, 5), 3F(x, y)的合力的合力

9、1F+2F+3F=0求求3F的坐标。的坐标。解:由题设解:由题设1F+2F+3F=0 得:得:(3, 4)+ (2, 5)+(x, y)=(0, 0)即:即:054023yx 15yx 3F( 5,1)第12页/共18页 (2,3),( 3,5),ABBA 例4、1 已知求的坐标. (1, 2), (2,1),ABAB 2 已知求 的坐标. 解: BA 2,33,5 5, 2 .,解:设B x,y 1, 2,2,1 ,ABx y 1221xy 即31xy .即B 3,-1第13页/共18页例例5:已知平行四边形:已知平行四边形ABCD的三个顶点的三个顶点A、B、C的坐标分别为(的坐标分别为(-

10、2,1)、()、(-1,3)、()、(3,4),),求顶点求顶点D的坐标。的坐标。4321-1-2-3-4-6-4-2246xyOA(-2,1)B(-1,3)C(3,4)D(x,y)第14页/共18页, )Dx y解:设顶点 的坐标为()2 , 1 () 13),2(1(AB)4 ,3(yxDC1 23- ,4)ABDCxy 有得:( ,)(yx4231),的坐标是(顶点22Dyx22OyxABCD例例5:已知平行四边形:已知平行四边形ABCD的三个顶点的坐标的三个顶点的坐标分别是(分别是(- 2,1)、()、(- 1,3)、()、(3,4),求),求顶点顶点D的坐标的坐标.第15页/共18页

11、变式:变式: 已知平面上三点的坐标分别为已知平面上三点的坐标分别为A( 2, 1), B( 1, 3), C(3, 4),求点,求点D的坐标使这四点的坐标使这四点构成平行四边形四个顶点。构成平行四边形四个顶点。OyxABC解:当平行四边形为解:当平行四边形为ADCB时,时,由由 得得D1=(2, 2)DCAB 当平行四边形为当平行四边形为ACDB时,时,得得D2=(4, 6)D1D2当平行四边形为当平行四边形为DACB时,时,得得D3=( 6, 0)D3第16页/共18页课堂总结课堂总结: :1.1.向量的坐标的概念向量的坐标的概念: :2.2.对向量坐标表示的理解对向量坐标表示的理解: :3.3.平面向量的坐标运算平面向量的坐标运算: :(1)(1)任一平面向量都有唯一的坐标任一平面向量都有唯一的坐标; ;(2)(2)向量的坐标与其起点、终点坐标的关系;向量的坐标与其起点、终点坐标的关系;(3)(3)相等的向量有相等的坐标相等的向量有相等的坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论