圆锥曲线复习提纲与重要题型_第1页
圆锥曲线复习提纲与重要题型_第2页
圆锥曲线复习提纲与重要题型_第3页
圆锥曲线复习提纲与重要题型_第4页
圆锥曲线复习提纲与重要题型_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、圆锥曲线复习提纲一、知识归纳:名 称椭圆双曲线图 象定 义 平面内到两定点的距离的和为常数(大于)的动点的轨迹叫椭圆即 当22时,轨迹是椭圆, 当22时,轨迹是一条线段 当22时,轨迹不存在平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线. 即当22时,轨迹是双曲线当22时,轨迹是两条射线当22时,轨迹不存在标准方 程焦点在轴上时: 焦点在轴上时: 注:根据分母的大小来判断焦点在哪一坐标轴上焦点在轴上时: 焦点在轴上时:常数的关 系 , 最大,最大,渐近线焦点在轴上时:焦点在轴上时:1.椭圆的性质:椭圆方程 (1)范围:,椭圆落在组成的矩形中。(2)对称性:图象关于y轴对称,

2、图象关于x轴对称,图象关于原点对称。(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点 椭圆共有四个顶点:,。叫椭圆的长轴,长为2a,叫椭圆的短轴,长为2b。(4)离心率:椭圆焦距与长轴长之比。()可以刻画椭圆的扁平程度,越大,椭圆越扁,越小,椭圆越圆.(5)点是椭圆上任一点,是椭圆的一个焦点,则,.(6)点是椭圆上任一点,当点在短轴端点位置时,取最大值.(7)椭圆的第二定义:当平面内点到一个定点的距离和它到一条定直线:的距离的比是常数 时,这个点的轨迹是椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e是椭圆的离心率.2、点与椭圆位置关系点与椭圆位置关系:(1)点在椭圆内 (2)点在椭圆上 (3

3、)点在椭圆外3、直线与椭圆位置关系(1)直线与椭圆的位置关系及判定方法位置关系公共点判定方法相交有两个公共点直线与椭圆方程首先应消去一个未知数得一元二次方程的根的判别式相切有且只有一个公共点相离无公共点(2)弦长公式:设直线交椭圆于则,或4、双曲线的几何性质: (1)顶点 顶点:,特殊点: 实轴:长为2a,a叫做实半轴长。虚轴:长为2b,b叫做虚半轴长。 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异。 (2)渐近线 双曲线的渐近线() (3)离心率 双曲线的焦距与实轴长的比,叫做双曲线的离心率 范围:e1 (4)等轴双曲线 定义:实轴和虚轴等长的双曲线叫做等轴双曲线。 等轴双曲线

4、的性质:a、渐近线方程为:;b、渐近线互相垂直;c、离心率。(5)共渐近线的双曲线系:如果已知一双曲线的渐近线方程为,那么此双曲线方程写成。 (6)共轭双曲线 以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线。(7).直线与双曲线位置关系同椭圆. 特别地,直线与双曲线有一个公共点,除相切外还有当直线与渐进线平行时,也是一个公共点. 抛物线:图象方程焦点准线抛物线的几何性质(1)顶点:抛物线的顶点就是坐标原点。(2)离心率: 抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示。由抛物线的定义可知,e1。(3)的几何意义:表示焦点到准线的距离

5、. 表示抛物线的通径(过焦点且垂直于轴的弦).(4)若点是抛物线上任意一点,则. (5)若过焦点的直线交抛物线于、两点,则弦长二重点题型1.圆锥曲线的定义:(1)已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是 ( ) A B C D(2)方程表示的曲线是_(3)已知点及抛物线上一动点P(x,y),则y+|PQ|的最小值是_2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)已知方程表示椭圆,则的取值范围为_ (2)若,且,则的最大值是_,的最小值是(3)双曲线的离心率等于,且与椭圆有公共焦点,则该双曲线的方程_ (4)设中心在坐标原点,焦

6、点、在坐标轴上,离心率的双曲线C过点,则C的方程为_3.圆锥曲线的几何性质:(1)若椭圆的离心率,则的值是_ _ (2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为_ (3)双曲线的渐近线方程是,则该双曲线的离心率等于_ (4)双曲线的离心率为,则=(5)设双曲线(a0,b0)中,离心率e,2,则两条渐近线夹角的取值范围是_ (6)设,则抛物线的焦点坐标为_4直线与圆锥曲线的位置关系:(1)若直线y=kx+2与双曲线x2-y2=6的右支有两个不同的交点,则k的取值范围是_(2)直线ykx1=0与椭圆恒有公共点,则m的取值范围是_(3)过双曲线的右焦点直线交双曲

7、线于A、B两点,若AB4,则这样的直线有_条(4)过点作直线与抛物线只有一个公共点,这样的直线有_(5)过点(0,2)与双曲线有且仅有一个公共点的直线的斜率的取值范围为_ (6)过双曲线的右焦点作直线交双曲线于A、B两点,若4,则满足条件的直线有_ _条 (7)对于抛物线C:,我们称满足的点在抛物线的内部,若点在抛物线的内部,则直线:与抛物线C的位置关系是_ (8)过抛物线的焦点作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是、,则_ (9)设双曲线的右焦点为,右准线为,设某直线交其左支、右支和右准线分别于,则和的大小关系为_ (10)求椭圆上的点到直线的最短距离 (11)直线与双曲线

8、交于、两点。当为何值时,、分别在双曲线的两支上?当为何值时,以AB为直径的圆过坐标原点?5、焦半径(1)已知抛物线方程为,若抛物线上一点到轴的距离等于5,则它到抛物线的焦点的距离等于_;(2)若该抛物线上的点到焦点的距离是4,则点的坐标为_(3)抛物线上的两点A、B到焦点的距离和是5,则线段AB的中点到轴的距离为_6、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:常利用第一定义和正弦、余弦定理求解。(1)短轴长为,离心率的椭圆的两焦点为、,过作直线交椭圆于A、B两点,则的周长为_(2)设P是等轴双曲线右支上一点,F1、F2是左右焦点,若,|PF1|=6,则该双曲线的方程为 (3

9、)椭圆的焦点为F1、F2,点P为椭圆上的动点,当0时,点P的横坐标的取值范围是(4)双曲线的虚轴长为4,离心率e,F1、F2是它的左右焦点,若过F1的直线与双曲线的左支交于A、B两点,且是与等差中项,则_(5)已知双曲线的离心率为2,F1、F2是左右焦点,P为双曲线上一点,且,求该双曲线的标准方程 7、抛物线中与焦点弦有关的一些几何图形的性质、弦长公式:(1)过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=6,那么|AB|等于_ (2)过抛物线焦点的直线交抛物线于A、B两点,已知|AB|=10,O为坐标原点,则ABC重心的横坐标为_8、圆锥曲线的中

10、点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。(1)如果椭圆弦被点A(4,2)平分,那么这条弦所在的直线方程是 (2)试确定m的取值范围,使得椭圆上有不同的两点关于直线对称 9动点轨迹方程:(1)(待定系数法)线段AB过x轴正半轴上一点M(m,0),端点A、B到x轴距离之积为2m,以x轴为对称轴,过A、O、B三点作抛物线,则此抛物线方程为(2)(直接法)已知动点P到定点F(1,0)和直线的距离之和等于4,求P的轨迹方程 (3)(定义法)由动点P向圆作两条切线PA、PB,切点分别为A、B,APB=600,则动点P的轨迹方程为(4)点M与点F(4,0)的距离比它到直线的距离小于1,则点

11、M的轨迹方程是_ (5) 一动圆与两圆M:和N:都外切,则动圆圆心的轨迹为(6)(参数法)动点P是抛物线上任一点,定点为,点M分所成的比为2,则M的轨迹方程为_(7)若点在圆上运动,则点的轨迹方程是_(8)过抛物线的焦点F作直线交抛物线于A、B两点,则弦AB的中点M的轨迹方程是_ 参考答案:1.圆锥曲线的定义:(1)C (2) 双曲线的左支 (3) 22.圆锥曲线的标准方程(1) ) (2) (3) (4) 3.圆锥曲线的几何性质:(1) 3或 (2) (3) 或); (4) 4或 (5) (6) 4直线与圆锥曲线的位置关系:(1) (-,-1) (2) 1,5)(5,+)(3) 3 (4)

12、2 (5) (6) 3 (7) 相离 (8) 1 (9) 等于 (10) (11);)5焦半径(1)7(2)(3)26焦点三角形(1)6 (2) (3) (4) (5)7、抛物线中与焦点弦有关的一些几何图形的性质、弦长公式:(1)8 (2)38圆锥曲线的中点弦问题 (1) (2)9动点轨迹方程:(1) (2)或 (3) (4) (5) 双曲线的一支 (6) (7) (8) 离心率的求法椭圆的离心率,双曲线的离心率,抛物线的离心率一、直接求出、,求解已知圆锥曲线的标准方程或、易求时,可利用率心率公式来解决。例1已知双曲线的一条渐近线方程为,则双曲线的离心率为( )A B C D .双曲线焦点在x

13、轴,由渐近线方程可得,故选A二、构造、的齐次式,解出根据题设条件,借助、之间的关系,构造、的关系(特别是齐二次式),进而得到关于的一元方程,从而解得离心率。例2:已知、是双曲线()的两焦点,以线段为边作正三角形,若边的中点在双曲线上,则双曲线的离心率是( )A. B. C. D. 解:如图,设的中点为,则的横坐标为,由焦半径公式, 即,得,解得(舍去),故选D变式练习1:设双曲线()的半焦距为,直线过,两点.已知原点到直线的距离为,则双曲线的离心率为( )A. B. C. D. 解:由已知,直线的方程为,由点到直线的距离公式,得,又, ,两边平方,得,整理得,得或,又 ,故选A变式练习2:双曲线虚轴的一个端点为,两个焦点为、,则双曲线的离心率为( )A B C D 解:在中, 由余弦定理,得,即, ,故选B三、采用离心率的定义以及椭圆的定义求解例3:设椭圆的两个焦点分别为、,过作椭圆长轴的垂线交椭圆于点,若为等腰直角三角形,则椭圆的离心率是_。解:变式设、分别是双曲线的左、右焦点,若双曲线上存在点,使,且,则双曲线离心率为( )A B C D .若双曲线上存在点A,使F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论