




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、(加减消元法)(加减消元法)8.28.2 消元消元解二元一次方程组解二元一次方程组火烧坪乡中心学校火烧坪乡中心学校 李作群李作群本节课从两个方程未知数系数相等或相反这种特殊关系出发,探究新的解法加减消元法的依据是等式的性质,核心仍然是消元比较两种不同的消元方法,可以发现其不同之处仅仅是具体方法的差异,而把“二元”化归为“一元”这一消元思想不变课件说明学习目标学习目标:(1)会用加减消元法解简单的二元一次方程组(2)理解解二元一次方程组的思路是“消元”, 经历由未知向已知转化的过程,体会化归思想学习重点学习重点:用加减消元法解简单的二元一次方程组课件说明探究新知探究新知问题问题1我们知道,对于方
2、程组我们知道,对于方程组10216xyxy,可以用代入消元法求解,除此之外,还有没有可以用代入消元法求解,除此之外,还有没有其他方法呢?其他方法呢?追问追问1代入消元法中代入的目的是什么?代入消元法中代入的目的是什么?消元消元两个方程中的系数相等;用可消去未知两个方程中的系数相等;用可消去未知数数y,得,得( (2x+ +y)-()-(x+ +y)=)=16- -10探究新知探究新知可以用代入消元法求解,除此之外,还有没有其可以用代入消元法求解,除此之外,还有没有其他方法呢?他方法呢?追问追问2这个方程组的两个方程中,这个方程组的两个方程中,y的系数有什么的系数有什么关系?利用这种关系你能发现
3、新的消元方法吗?关系?利用这种关系你能发现新的消元方法吗?问题问题1我们知道,对于方程组我们知道,对于方程组10216xyxy,探究新知探究新知可以用代入消元法求解,除此之外,还有没有可以用代入消元法求解,除此之外,还有没有其他方法呢?其他方法呢?追问追问3这一步的依据是什么?这一步的依据是什么?等式性质等式性质追问追问4你能求出这个方程组的解吗?你能求出这个方程组的解吗? 这个方程组的解是这个方程组的解是64xy, 问题问题1我们知道,对于方程组我们知道,对于方程组10216xyxy,探究新知探究新知追问追问5也能消去未知数也能消去未知数y,求出,求出x吗?吗?210 16xyxy.()()
4、可以用代入消元法求解,除此之外,还有没有可以用代入消元法求解,除此之外,还有没有其他方法呢?其他方法呢?问题问题1我们知道,对于方程组我们知道,对于方程组10216xyxy,未知数未知数y的系数互为相反数,由的系数互为相反数,由+,可消去,可消去未知数未知数y,从而求出未知数从而求出未知数x的值的值问题问题2联系上面的解法,想一想应怎样解方程组联系上面的解法,想一想应怎样解方程组3102.815108xyxy,探究新知探究新知追问追问1此题中存在某个未知数系数相等吗?你发此题中存在某个未知数系数相等吗?你发现未知数的系数有什么新的关系?现未知数的系数有什么新的关系? 追问追问2两式相加的依据是
5、什么?两式相加的依据是什么?探究新知探究新知“等式性质等式性质”问题问题2联系上面的解法,想一想应怎样解方程组联系上面的解法,想一想应怎样解方程组3102.815108xyxy,问题问题3这种解二元一次方程组的方法叫什么?有这种解二元一次方程组的方法叫什么?有哪些主要步骤?哪些主要步骤? 当二元一次方程组中的两个二元一次方程中当二元一次方程组中的两个二元一次方程中同一同一未知数的系数相反或相等未知数的系数相反或相等时,把这两个方程的两边分时,把这两个方程的两边分别别相加或相减相加或相减,就能消去这个未知数,得到一个一元,就能消去这个未知数,得到一个一元一次方程,这种方法叫做一次方程,这种方法叫
6、做加减消元法加减消元法,简称,简称加减法加减法 探究新知探究新知追问追问1两个方程加减后能够实现消元的前提条两个方程加减后能够实现消元的前提条件是什么?件是什么? 探究新知探究新知追问追问2加减的目的是什么?加减的目的是什么?追问追问3关键步骤是哪一步?依据是什么?关键步骤是哪一步?依据是什么?两个二元一次方程中同一未知数的系数两个二元一次方程中同一未知数的系数相反或相等相反或相等 “消元消元” ” 关键步骤是两个方程的两边分别相加或相减,关键步骤是两个方程的两边分别相加或相减,依据是等式性质依据是等式性质 应用新知应用新知问题问题4如何用加减消元法解下列二元一次方程组?如何用加减消元法解下列
7、二元一次方程组?34165633xyxy,追问追问1直接加减是否可以?为什么?直接加减是否可以?为什么? 追问追问2能否对方程变形,使得两个方程中某个能否对方程变形,使得两个方程中某个未知数的系数相反或相同?未知数的系数相反或相同? 追问追问3如何用加减法消去如何用加减法消去x?应用新知应用新知3x+4y=165x- -6y=33二二元元一一次次方方程程组组15x+20y=8015x- -18y=9938y=- -19y= 12x=6解得解得y代代入入3x+4y=163使未知数使未知数x系数相等系数相等5两式相减两式相减消消 x解得解得x课堂小结课堂小结用加减消元法解二元一次方程组有哪些关键用加减消元法解二元一次方程组有哪些关键步骤?步骤?课堂练习课堂练习教科书第教科书第96页练习第页练习第1题题布置作业布置作业教科书教科书 习题习题8.2 第第3题题 板书设计n课题:消元法解二元一次方程组(3)n加减消元法的探究过程n加减消元法的定义n例3的解答过程及框图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南人文科技学院《林木遗传学》2023-2024学年第二学期期末试卷
- 黄河科技学院《野生动物资源学》2023-2024学年第二学期期末试卷
- 辽宁大学《神经精神疾病及治疗药物》2023-2024学年第二学期期末试卷
- 四平职业大学《写实油画》2023-2024学年第二学期期末试卷
- 人力资本质量与公司创新能力的关联分析
- 聚变经济性评估-洞察及研究
- 生物矿化信号通路-洞察及研究
- 竞品包装分析对比-洞察及研究
- 呼吸道疾病的中医护理
- 宫颈环切术护理查房
- 中外教育简史课件
- 国际海事公约课件
- 新修订《黄河保护法》PPT
- 北斗卫星导航发展及其的应用课件
- 过敏性休克应急预案演练记录表
- 第八章-三相异步电动机的电力拖动课件
- 工程施工停止点检查表
- 市政工程监理规划范本(完整版)
- 国贸实验一进出口价格核算
- 幼儿园中班美术:《美丽的蝴蝶》 PPT课件
- 单片机芯片8279用法
评论
0/150
提交评论