版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、目录摘要3关键词3一、概述3二、优化方法介绍3(一)、一维搜索方法3(二)无约束优化方法51)共轭方向的生成62)基本算法63)改进算法的基本步骤如下7三、优化设计实例101)模型102)变量103)优化设计源程序104)分析结果20四、课程总结20机械优化设计课程设计论文摘要:随着社会经济的迅速发展,机械优化设计作为一门为工程设计提供手段的学科,在这样的时代背景下应运而生。针对具体的课题,通过一些设计变量而建立起目标函数的过程,称为数学建模;应用优化方法为工程设计寻找出最优解是现代优化设计所研究的主要课题与方向。关键词:机械优化设计;设计变量;目标函数;数学模型;优化方法一、 概述 优化设计
2、是20世纪60年代初发展起来的一门新学科,它是将最优化原理与计算技术应用于设计领域,为工程设计提供一种重要的科学设计方法的手段。利用这种新的设计方法,人们就可以从众多的设计方案中寻找出最佳设计方案,从而大大提高设计效率和设计质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门,成为现代工程设计的一个重要手段!二、优化方法介绍 (一)、一维搜索方法一维搜索方法可分为两类,一类称为试探法,这类方法是按某种给定的规律来确定区间内插入点的位置,此点位置的确定仅仅按照区间缩短如何加快,而不顾及函数值的分布关系,例如黄金分割法,裴波那契法等。另一类一维搜索法称作插值法或函数逼近
3、法。这类方法是根据某些点处的某些信息,如函数值,一阶导数,二阶导数等,构造一个插值函数来逼近原来的函数,用插值函数的极小点作为区间的插入点,这类方法主要有二次插值法,三次插值法等。在此重点讨论黄金分割法。黄金分割法适用于a, b区间上的任何单谷函数求极小值问题,对函数除要求“单谷”外不作其他要求,甚至可以不连续。因此,这种方法的适应面相当广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间a, b内适当插入两点1,2,并计算其函数值。1,2将区间分为三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,使搜索区间得以缩短。然后再在保留下来的区间上作同样的处置,如此迭代下
4、去,使搜索区间无限缩小,从而得到极小点的数值近似解。黄金分割法要求插入点1、2的位置相对于区间a, b两端点具有对称性,即1bba2aba其中,为待定常数。 图3-6除对称要求外,黄金分割法还要求在保留下来的区间内再插入一点所形成的区间新三段,与原来区间的三段具有相同的比例分布 。设原区间a, b长度为1如图3-6所示,保留下来的区间a, 2长度为,区间缩短率为。为了保持相同的比例分布,新插入点3应在1位置上,1在原区间的1位置应相当于在保留区间的²位置。故有1²²10取方程正数解,得(51)20.618若保留下来的区间为1, b,根据插入点的对称性,也能推得同样
5、的 值。所谓的黄金分割是指将一线段划分为两段的方法,使整段长与较长段的长度比值等于较长段与较短段的比值,即11同样算的0.618 。可见黄金分割法能使得相邻两次搜索区间都具有相同的缩短率0.618,所以黄金分割法又称为0.618法。1)黄金分割法的搜索过程是:给出初始搜索区间a, b及收敛精度,将赋以0.618 。2)按坐标点计算公式计算1 和2,并计算其对应的函数值f(1) ,f(2) 。根据消去法原理缩短搜索区间。为了能用原来的坐标点计算公式,需进行区间名称的代换,并在保留区间中计算一个新的试验点及其函数值。4)检查区间是否缩短到足够小和函数值收敛到足够近,如果条件不满足则返回到步骤2 。
6、5)如果条件满足,则取最后2试验点的平均值作为极小点的数值近似解。黄金分割法的程序框图如图3-7所示。 图3-7(二)无约束优化方法前面所举的机械优化设计问题都是在一定的限制条件下追求某一指标为最小,所以它们都属于约束优化问题。但是有些实际问题,其数学模型本身就是一个无约束优化问题,或者除了在非常接近最终极小值的情况下,都可以按无约束优化问题来解决。研究约束优化问题的另一个原因是,通过熟悉它的解法可以为研究无约束优化问题打下良好的基础。第三个原因,约束优化问题的求解可以通过一系列无约束优化方法来达到。由此可见,无约束优化问题的解法是优化设计方法的基本组成,也是优化方法的基础。属于无约束优化方法
7、的主要有:1、最速下降法2、牛顿型法3、共轭方向及共轭方向法4、共轭梯度法5、变尺度法6、坐标轮换法7、鲍威尔法8、单形替换法下面主要介绍鲍威尔法的原理及应用。鲍威尔法是直接利用函数值来构造共轭方向的一种共轭方向法。这种方法是在研究具有正定矩阵G的二次函数f(x)=1/2 xTGxbTxc的极小化问题时形成的。其基本思想是在不用导数的前提下,在迭代中逐次构造G的共轭方向。1)共轭方向的生成 设xk、 xk+1为从不同点出发,沿着同一方向dj进行一维搜索而得到的两个极小点,如图所示。根据梯度和等值面相互垂直的特性,dj和xk、xk+1两点处的梯度gg、gg+1之间存在关系(dj)Tgk=0(dj
8、)Tgk+1=0另一方面,对于上述二次函数,其xk、xk+1两点处的梯度可表示为gk=Gxk+bgk+1=G xk+1+b两式相减得gk+1gk=G(xk+1xk)因而有(dj)T( gk+1gk)=(dj)TG(xk+1xk)=0若取方向dk= xk+1xk,如图4-15所示,则dk和dj对G共轭。这说明只要沿着dj方向分别对函数作两次一维搜索,得到两个极小值xk和xk+1。那么这两点的连线所给出的方向就是与一起对G共轭的方向。对于二维问题,f(x)的等值线为一簇椭圆,A、B为沿x1轴方向上的两个极小值点,分别处于等值线与x1轴方向的切点上,如图4-16所示 。根据上述分析,则A、B两点的连
9、线AB就是与x1轴一起对G共轭的方向。沿此共轭方向进行一维搜索就可以找到函数f(x)的极小值点x*。2)基本算法 现在针对二维情况来描述鲍威尔的基本算法,如图4-17所示。任选一初始点x0,再选两个线性无关的向量,如坐标轴单位向量e1= 1 0T和 e2=0 1T作为初始搜索方向。从x0出发,顺次沿e1、e 2作一维搜索得点x10、x20,两点连线得一新方向dl= x20x10用dl代替e1形成两个线性无关向量e 2、dl,作为下一轮迭代的搜索方向。再从x20出发,沿dl作一维搜索得点x01,作为下一轮迭代的初始点。从x1出发,顺次沿e2、d1作一维搜索,得到点x11、x21,两点连线得一新方
10、向d2= x21x01x01、x21两点是从不同点x0、x11出发,分别沿d1方向进行一维搜索而得的极小点,所以x01、x21两点连线的方向d2同d1一同对G共轭。再从x21出发,沿d2作一维搜索得点x2 。因为x2相当于从x0出发分别沿G的两个共轭方向d1、d2进行两次一维搜索而得到的点,所以x2点即是二维问题的极小值点x*3)改进算法的基本步骤如下:给定初始点x0(记作x00),选取初始方向组,它由n个线性无关的向量d10,d20,,dn0(如n个坐标轴单位向量e1,e2,en)所组成,置k0 。从x0k出发,顺次沿d1k,d2k,,dnk作一维搜索得x1k,x2k,xnk,接着以xnk为
11、起点,沿方向dkn+1=xnk-x0k移动一个xnk-x0k的距离,得到xn+1k=xnk+(xnk-x0k)=2xnk-x0kx0k、xnk、xn+1k分别称为一轮迭代的始点、终点和反射点。始点、终点和反射点所对应的函数值分别表示为F0=f(x0k)F2=f(xnk)F3=f(xn+1k)同时计算各中间点处的函数值,并记为fi=f(xik)(i=0,1,2,n)因此有F0=f0,F2=fn 。计算n个函数值之差f0-f1, f1-f2, fn-1-fn 。记作i=fi-1-fi(i=1,2,n)其中最大者记为m=maxi= fm-1-fm根据是否满足判定条件F3F0和(F0-2F2+F3)(
12、F0-F2-m)20.5m(F0-F3)2来确定是否要对原方向组进行替换。若不满足判别条件,则下轮迭代仍用原方向组,并以xnk、xn+1k中函数值小者作为下轮迭代的始点。若满足上述判别条件,则下轮迭代应对原方向组进行替换,将dn+1k补充到原方向组的最后位置,而除掉dmk 。即新方向组为d1k,d2k,,dm-1k,dm+1k,dnk,dn+1k作为下轮迭代的搜索方向。下轮迭代的始点取为沿dn+1k方向进行一维搜索的极小点x0k+1。判断是否满足收敛准则。若满足则取x0k+1为极小点,否则应置kk+1,返回2,继续进行下一轮迭代。这样重复迭代的结果,后面加进去的向量都彼此对G共轭,经n轮迭代即
13、可得到一个由n个共轭方向所组成的方向组。对于2次函数,最多不超过n次就可以找到极小点,而对于一般函数,往往要超过n次才能找到极小点(这里的“n”表示设计空间的维数)。改进后的鲍威尔法程序框图如下 开始给定x0、x00x0;di0eii=n?if(xi1k) f(xik)xikxi1k+ikdikik:minf(xi1k+dik) =i1否是K0ii+1结束否是否否是kk+1x0k+1xn+1kx0k+1xnk+n+1kdn+1kn+1k:minf(xnk+dn+1k) 判别条件是否满足?x0k+1xnkx*x0k+1|xnkx0k|?dik+1di+1k(i=m,m+1,n)dik+1di+1
14、k(i=1,2,m1)xn+1kxnkx0k xn+1k2xnkx0k 是F2F3F0f(x0k) F2f(xnk) F3f(xn+1k) imax i三、优化设计实例用鲍威尔法解决二维问题1)模型 f(x)=4(x15)2+(x26)22)变量 x1、x23)优化设计源程序#include "stdio.h"#include "stdlib.h"#include "math.h"double objf(double x)double ff;ff=4*x0*x0+x1*x1-40*x0-12*x1+136;return(ff);voi
15、d jtf(double x0,double h0,double s,int n,double a,double b)int i;double *x3,h,f1,f2,f3;for(i=0;i<3;i+)xi=(double *)malloc(n*sizeof(double);h=h0;for(i=0;i<n;i+)*(x0+i)=x0i;f1=objf(x0);for(i=0;i<n;i+)*(x1+i)=*(x0+i)+h*si;f2=objf(x1);if(f2>=f1)h=-h0; for(i=0;i<n;i+) *(x2+i)=*(x0+i); f3=f
16、1; for(i=0;i<n;i+) *(x0+i)=*(x1+i); *(x1+i)=*(x2+i); f1=f2; f2=f3; for(;) h=2*h; for(i=0;i<n;i+) *(x2+i)=*(x1+i)+h*si; f3=objf(x2); if(f2<f3) break; else for(i=0;i<n;i+) *(x0+i)=*(x1+i); *(x1+i)=*(x2+i); f1=f2; f2=f3; if(h<0) for(i=0;i<n;i+) ai=*(x2+i); bi=*(x0+i); else for(i=0;i&l
17、t;n;i+) ai=*(x0+i); bi=*(x2+i); for(i=0;i<3;i+) free(xi);double gold(double a,double b,double eps,int n,double xx)int i;double f1,f2,*x2,ff,q,w;for(i=0;i<2;i+)xi=(double *)malloc(n*sizeof(double);for(i=0;i<n;i+)*(x0+i)=ai+0.618*(bi-ai); *(x1+i)=ai+0.382*(bi-ai);f1=objf(x0);f2=objf(x1);do if
18、(f1>f2) for(i=0;i<n;i+) bi=*(x0+i); *(x0+i)=*(x1+i); f1=f2; for(i=0;i<n;i+) *(x1+i)=ai+0.382*(bi-ai); f2=objf(x1); else for(i=0;i<n;i+) ai=*(x1+i); *(x1+i)=*(x0+i); f2=f1; for(i=0;i<n;i+) *(x0+i)=ai+0.618*(bi-ai); f1=objf(x0); q=0;for(i=0;i<n;i+) q=q+(bi-ai)*(bi-ai);w=sqrt(q);while
19、(w>eps);for(i=0;i<n;i+) xxi=0.5*(ai+bi);ff=objf(xx);for(i=0;i<2;i+)free(xi);return(ff);double oneoptim(double x0,double s,double h0,double epsg,int n,double x)double *a,*b,ff;a=(double *)malloc(n*sizeof(double);b=(double *)malloc(n*sizeof(double);jtf(x0,h0,s,n,a,b);ff=gold(a,b,epsg,n,x);fre
20、e(a);free(b);return (ff);double powell(double p,double h0,double eps,double epsg,int n,double x)int i,j,m;double *xx4,*ss,*s;double f,f0,f1,f2,f3,fx,dlt,df,sdx,q,d;ss=(double *)malloc(n*(n+1)*sizeof(double);s=(double *)malloc(n*sizeof(double);for(i=0;i<n;i+)for(j=0;j<=n;j+) *(ss+i*(n+1)+j)=0;
21、*(ss+i*(n+1)+i)=1;for(i=0;i<4;i+)xxi=(double *)malloc(n*sizeof(double);for(i=0;i<n;i+)*(xx0+i)=pi;for(;)for(i=0;i<n;i+) *(xx1+i)=*(xx0+i); xi=*(xx1+i); f0=f1=objf(x); dlt=-1; for(j=0;j<n;j+) for(i=0;i<n;i+) *(xx0+i)=xi; *(s+i)=*(ss+i*(n+1)+j); f=oneoptim(xx0,s,h0,epsg,n,x); df=f0-f; i
22、f(df>dlt) dlt=df; m=j; sdx=0; for(i=0;i<n;i+) sdx=sdx+fabs(xi-(*(xx1+i); if(sdx<eps) free(ss); free(s); for(i=0;i<4;i+) free(xxi); return(f); for(i=0;i<n;i+) *(xx2+i)=xi; f2=f; for(i=0;i<n;i+) *(xx3+i)=2*(*(xx2+i)-(*(xx1+i); xi=*(xx3+i); fx=objf(x); f3=fx; q=(f1-2*f2+f3)*(f1-f2-dlt
23、)*(f1-f2-dlt); d=0.5*dlt*(f1-f3)*(f1-f3); if(f3<f1)|(q<d) if(f2<=f3) for(i=0;i<n;i+) *(xx0+i)=*(xx2+i); else for(i=0;i<n;i+) *(xx0+i)=*(xx3+i); else for(i=0;i<n;i+) *(ss+(i+1)*(n+1)=xi-(*(xx1+i); *(s+i)=*(ss+(i+1)*(n+1); f=oneoptim(xx0,s,h0,epsg,n,x); for(i=0;i<n;i+) *(xx0+i)=xi
24、; for(j=m+1;j<=n;j+) for(i=0;i<n;i+) *(ss+i*(n+1)+j-1)=*(ss+i*(n+1)+j); void main()double p=8,9;double ff,x2;ff=powell(p,0.3,0.001,0.0001,2,x);printf("x0=%f,x1=%f,ff=%fn",x0,x1,ff);printf("学号:202112701041 姓名:朱振");getchar();4)分析结果 四、课程总结优化设计课程的学习,初步掌握了一些对机械工程设计优化的方法,能够应用于机械的
25、设计中。相信在以后的工作当中,会有所应用。参考文献 机械优化设计第四版 孙靖民 机械工业出版社 教师见习报告总结期待已久的见习已经结束了,在龙岩三中高中部见习听课,虽然只是短短的两个星期,但感触还是蛮深的,以前作为一名学生坐在课室听课,和现在作为一名准教师坐在课室听课是完全不同的感受,感觉自己学到了一些在平时课堂上学不到的东西。在这里,我获得的不仅是经验上的收获,更多是教学管理,课堂教学等的理念,以及他们带给我的种种思考。教育见习实践过程:听课。教育见习的主要目的是让学生在指导教师的引导下,观摩教师上课方法、技巧等。听课是教育见习的主要内容。我院规定在一周的见习中需完成至少6课的见习任务。我在
26、教师的安排指导下,分别对高一、高二物理专业课型为主,其他课型齐头的方式,积极主动的完成了听课任务,收到良好的效果。我听的第一节课是高二(8)班,这是一个平衡班,水平不如实验班高。在上课前。科任老师已经跟我说了这个班的纪律是比较差的,而且成绩也不是很好。在我听课期间,确实有几个学生在课堂上说话,但是我发现了一个有趣的现象,这个现象我在往后的几个班都发现了,就是绝大部分的学生的学习热情都好高涨,积极举手发言,积极参与课堂活动。我跟老师们提起这个现象的时候,科任老师就跟我说,一个班里不可能所有的学生都能全神贯注地听完一节课,所以作为一名教师,应该想办法吸引学生的注意力,调动的积极性,比如可以以小组为
27、单位,以抢答计分的形式调动学生的积极性,这样课堂气氛就会活跃起来了。在为期两周的见习工作中,我真的有很大的感触,我第一次感受到自己已经从一名学生向一名教师靠近,走在校园里,每当有学生叫我一声老师,我在感到无比自豪的同时,还感受到了自己的责任。见习工作结束了,我要回到学校继续我的学习了,但是我会好好记住我从*中学学到的一切,并应用于我的专业学习中去。一、教学管理理念 在龙岩三中,从领导阶层到一位普通的科任老师,都秉承以学生为主体的宗旨进行学校的管理,进行教学工作的开展。作为一个课程改革的示范学校,一个教育实验基地。这所学校鼓励着老师做各种研究,各种改革。每个班主任都有着自己的管理经验与
28、管理宗旨。有了这种思想的自由,自然这里也就充满着探索与尝试,从而有所创造与进步。在我见习的班集体中,班主任对他的学生说:“我要让你们成为学习型的管理者,也是管理型的学习者。”这样一句简单的话,让我感到这里老师进行班级管理的良苦用心。他们关心的不只是学生的学习,更多的是从一个完整的人的概念出发,去培养学生多方面的素质。二、教学理念 在见习期间,借着录课的机会,我听了很多的市级,校级的公开棵,还有理科实验班的课。在这些课堂上,让我看到教学改革正在悄然进行,有意识的老师正在努力体会“以学生为主体”的课堂模式。学生的创造也逐步成为教师追求的教学效果。其次,这里的老师也都在适应着多媒体教学,信息化教学,使得课堂更加生动,资源更加丰富,学生获取学习资源的渠道也就更多。尽管,这种教学理念、教学模式的推广仍然有很长的路,但似乎也并不遥远,相信,这股改革的浪潮会给教育领域带来很大的冲击。 三、实际工作经验 在上面,是我在这所学校感受最深刻,也是认为最有意义的收获。实际工作经验上,由于在指导老师的指导下,也获取
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 盘子商业机会挖掘与战略布局策略研究报告
- 定时传感器产品供应链分析
- 家用罐装饮料保温容器产品供应链分析
- 船用光反射镜项目运营指导方案
- 家具的定制制造行业相关项目经营管理报告
- 济南市区住房出租合同书
- 多元文化音乐行业经营分析报告
- 自行车车架项目运营指导方案
- 草地曲棍球运动用球商业机会挖掘与战略布局策略研究报告
- 夯实机产业链招商引资的调研报告
- 2024年安全员-C3证考试题库及答案
- 食管手术配合
- DL∕T 817-2014 立式水轮发电机检修技术规程
- 机电材料见证取样复试
- 2024年秋新版人教版三年级英语上册电子课本
- 护理安全教育案例及分析(3篇模板)
- 2024年信息安全师考试题库及答案(含AB卷)
- 24春国家开放大学《教育研究方法#》作业1-4参考答案
- 机场地勤的职业规划
- 大学物理-5省公开课金奖全国赛课一等奖微课获奖课件
- zpl语言指令解析
评论
0/150
提交评论