版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.2.1几类不同增长几类不同增长的函数模型(一)的函数模型(一)复复 习习 引引 入入讲讲 授授 新新 课课例例1 假设你有一笔资金用于投资,现在有假设你有一笔资金用于投资,现在有三种投资方案供你选择,这三种方案的回三种投资方案供你选择,这三种方案的回报如下:报如下:方案一:每天回报方案一:每天回报40元;元;方案二:第一天回报方案二:第一天回报10元,以后每天比前元,以后每天比前一天多回报一天多回报10元;元;方案三:第一天回报方案三:第一天回报0.4元,以后每天的回元,以后每天的回报比前一天翻一番报比前一天翻一番.请问,你会选择哪种投资方案?请问,你会选择哪种投资方案?解:解:设第设第x
2、天所得回报是天所得回报是y元,元,解:解:设第设第x天所得回报是天所得回报是y元,元,则方案一可以用函数则方案一可以用函数y40(xN*)进行进行描述;描述;解:解:设第设第x天所得回报是天所得回报是y元,元,则方案一可以用函数则方案一可以用函数y40(xN*)进行进行描述;描述;方案二可以用函数方案二可以用函数y10 x (xN*)进行进行描述;描述;解:解:设第设第x天所得回报是天所得回报是y元,元,则方案一可以用函数则方案一可以用函数y40(xN*)进行进行描述;描述;方案二可以用函数方案二可以用函数y10 x (xN*)进行进行描述;描述;方案三可以用函数方案三可以用函数y0.42x1
3、(xN*)进行描述进行描述.20406080100120246810Oyx 函数图象是分析问题的好帮函数图象是分析问题的好帮手手.为了便于观察,我们用虚线为了便于观察,我们用虚线连接离散的点连接离散的点.20406080100120246810Oyxy40 函数图象是分析问题的好帮函数图象是分析问题的好帮手手.为了便于观察,我们用虚线为了便于观察,我们用虚线连接离散的点连接离散的点.20406080100120246810Oyxy40y10 x 函数图象是分析问题的好帮函数图象是分析问题的好帮手手.为了便于观察,我们用虚线为了便于观察,我们用虚线连接离散的点连接离散的点.20406080100
4、120246810Oyxy40y10 xy0.42x1 函数图象是分析问题的好帮函数图象是分析问题的好帮手手.为了便于观察,我们用虚线为了便于观察,我们用虚线连接离散的点连接离散的点.20406080100120246810Oyxy40y10 xy0.42x1 函数图象是分析问题的好帮函数图象是分析问题的好帮手手.为了便于观察,我们用虚线为了便于观察,我们用虚线连接离散的点连接离散的点. 我们看到,底我们看到,底为为2的指数函数模型的指数函数模型比线性函数模型比线性函数模型增增长速度要快得多长速度要快得多.从中你对从中你对“指数指数爆爆炸炸”的含义有什的含义有什么么新的理解?新的理解? 204
5、06080100120246810Oyxy40y10 x 根据以上的分根据以上的分析,是否应作这样析,是否应作这样的选择的选择: 投资投资5天以天以下选方案一下选方案一,投资,投资58天选方案二天选方案二,投资投资8天以上选方天以上选方案三案三?y0.42x1例例2 某公司为了实现某公司为了实现1000万元利润的目标,万元利润的目标,准备制定一个激励销售部门的奖励方案:准备制定一个激励销售部门的奖励方案:在销售利润达到在销售利润达到10万元时,按销售利润进万元时,按销售利润进行奖励,且奖金行奖励,且奖金y(单位:万元单位:万元)随销售利润随销售利润x(单位:万元单位:万元)的增加而增加,但奖金
6、总数的增加而增加,但奖金总数不超过不超过5万元,同时奖金总数不超过利润万元,同时奖金总数不超过利润的的25%,现有三个奖励模型:,现有三个奖励模型:y0.25x, ylog7x1, y1.002x, 其中哪个模型能符合公司的要求?其中哪个模型能符合公司的要求?分析:分析:某个奖励模型符合公司要求,就是某个奖励模型符合公司要求,就是依据这个模型进行奖励时,奖金总数不超依据这个模型进行奖励时,奖金总数不超过过5万元,同时奖金不超过利润的万元,同时奖金不超过利润的25%,由于公司总的利润目标为由于公司总的利润目标为1000万元,所以万元,所以部门销售利润一般不会超过公司总的利润部门销售利润一般不会超
7、过公司总的利润.于是,只需在区间于是,只需在区间10,1000上,检验三个上,检验三个模型是否符合公司要求即可模型是否符合公司要求即可.分析:分析:某个奖励模型符合公司要求,就是某个奖励模型符合公司要求,就是依据这个模型进行奖励时,奖金总数不超依据这个模型进行奖励时,奖金总数不超过过5万元,同时奖金不超过利润的万元,同时奖金不超过利润的25%,由于公司总的利润目标为由于公司总的利润目标为1000万元,所以万元,所以部门销售利润一般不会超过公司总的利润部门销售利润一般不会超过公司总的利润.于是,只需在区间于是,只需在区间10,1000上,检验三个上,检验三个模型是否符合公司要求即可模型是否符合公
8、司要求即可. 不妨先作出函数图象,通过观察函数不妨先作出函数图象,通过观察函数的图象,得到初步的结论再通过具体计算,的图象,得到初步的结论再通过具体计算,确认结果确认结果.81234567200400600800 1000Oyx图象图象81234567200400600800 1000Oyxy5图象图象81234567200400600800 1000y0.25xOyxy5图象图象81234567200400600800 1000y0.25xylog7x1Oyxy5图象图象81234567200400600800 1000y0.25xylog7x1y1.002xOyxy5图象图象解:解: 借助
9、计算机作出函数借助计算机作出函数y0.25x, ylog7x1, y1.002x的图象的图象.观察图象发现,在区间观察图象发现,在区间10,1000上,模型上,模型y0.25x,y1.002x的图象都有一部分在的图象都有一部分在直线直线y5的上方,只有模型的上方,只有模型ylog7x1的图象始终的图象始终在在y5的下方,这的下方,这说明只有按模型说明只有按模型ylog7x1进行进行奖励时才符合公奖励时才符合公司的要求,下面司的要求,下面通过计算确认上通过计算确认上述判断述判断.81234567200 400 600 8001000y0.25xylog7x1y1.002xOyxy5 首选计算哪个
10、模型的奖金总数不超过首选计算哪个模型的奖金总数不超过5万万.解:解: 首选计算哪个模型的奖金总数不超过首选计算哪个模型的奖金总数不超过5万万. 对于模型对于模型y0.25x,它在区间,它在区间10, 1000上递增,上递增,而且当而且当x20时,时,y5,因此,当,因此,当x20时,时,y5,所以该模型不符合要求;所以该模型不符合要求;解:解: 首选计算哪个模型的奖金总数不超过首选计算哪个模型的奖金总数不超过5万万. 对于模型对于模型y0.25x,它在区间,它在区间10, 1000上递增,上递增,而且当而且当x20时,时,y5,因此,当,因此,当x20时,时,y5,所以该模型不符合要求;所以该
11、模型不符合要求; 对于模型对于模型y1.002x,由函数图象,并利用计算,由函数图象,并利用计算器,可知在区间器,可知在区间(805, 806) 内有一个点内有一个点x0满足满足1.002x5,由于它在区间,由于它在区间10,1000上递增,因此当上递增,因此当xx0时,时,y5,所以该模型也不符合要求;,所以该模型也不符合要求;解:解: 首选计算哪个模型的奖金总数不超过首选计算哪个模型的奖金总数不超过5万万. 对于模型对于模型y0.25x,它在区间,它在区间10, 1000上递增,上递增,而且当而且当x20时,时,y5,因此,当,因此,当x20时,时,y5,所以该模型不符合要求;所以该模型不
12、符合要求; 对于模型对于模型y1.002x,由函数图象,并利用计算,由函数图象,并利用计算器,可知在区间器,可知在区间(805, 806) 内有一个点内有一个点x0满足满足1.002x5,由于它在区间,由于它在区间10,1000上递增,因此当上递增,因此当xx0时,时,y5,所以该模型也不符合要求;,所以该模型也不符合要求; 对于模型对于模型ylog7x1,它在区间,它在区间10,1000 上递上递增,而且当增,而且当x1000时,时,ylog7100014.555,所以它符合奖金总数不超过所以它符合奖金总数不超过5万元的要求万元的要求. 解:解:再计算按模型再计算按模型 ylog7x1奖励时
13、,奖金是否奖励时,奖金是否不超过利润的不超过利润的25%,即当,即当x10,1000时,是否有时,是否有 25. 01log7 xxxy成立成立.解:解:令令f(x)log7x10.25,x10,1000.利用计利用计算机作出函数算机作出函数f(x)的图象,由图象可知它是递减的,的图象,由图象可知它是递减的,因此因此f(x)f(10)0.31670,即,即log7x10.25x.所以当所以当x10,1000时,时, 再计算按模型再计算按模型 ylog7x1奖励时,奖金是否奖励时,奖金是否不超过利润的不超过利润的25%,即当,即当x10,1000时,是否有时,是否有 25. 01log7 xxx
14、y25. 01log7 xx成立成立.解:解:模型模型ylog7x1奖励时奖励时, 奖金不会超过利润的奖金不会超过利润的25%. 说明按说明按令令f(x)log7x10.25,x10,1000.利用计利用计算机作出函数算机作出函数f(x)的图象,由图象可知它是递减的,的图象,由图象可知它是递减的,因此因此f(x)f(10)0.31670,即,即log7x10.25x.所以当所以当x10,1000时,时, 再计算按模型再计算按模型 ylog7x1奖励时,奖金是否奖励时,奖金是否不超过利润的不超过利润的25%,即当,即当x10,1000时,是否有时,是否有 25. 01log7 xxxy25. 0
15、1log7 xx成立成立. 综上所述,模型综上所述,模型ylog7x1确实能符合公司确实能符合公司要求要求. 解:解:模型模型ylog7x1奖励时奖励时, 奖金不会超过利润的奖金不会超过利润的25%. 说明按说明按归纳总结中学数学建模的主要步骤归纳总结中学数学建模的主要步骤(1) 理解问题理解问题:阅读理解,读懂文字叙述,认:阅读理解,读懂文字叙述,认真审题,理解实际背景真审题,理解实际背景.弄清楚问题的实际背弄清楚问题的实际背景和意义,设法用数学语言来描述问题景和意义,设法用数学语言来描述问题.(2) 简化假设:理解所给的实际问题之后,领简化假设:理解所给的实际问题之后,领悟背景中反映的实质
16、,需要对问题作必要的悟背景中反映的实质,需要对问题作必要的简化,有时要给出一些恰当的假设,精选问题简化,有时要给出一些恰当的假设,精选问题中关键或主要的变量中关键或主要的变量.(3) 数学建模:把握新信息,勇于探索,善于联数学建模:把握新信息,勇于探索,善于联想,灵活化归,根据题意建立变量或参数间的想,灵活化归,根据题意建立变量或参数间的数学关系,实现实际问题数学化,引进数学符数学关系,实现实际问题数学化,引进数学符号,构建数学模型,常用的数学模型有方程、号,构建数学模型,常用的数学模型有方程、不等式、函数不等式、函数.归纳总结中学数学建模的主要步骤归纳总结中学数学建模的主要步骤(1) 理解问
17、题理解问题:阅读理解,读懂文字叙述,认:阅读理解,读懂文字叙述,认真审题,理解实际背景真审题,理解实际背景.弄清楚问题的实际背弄清楚问题的实际背景和意义,设法用数学语言来描述问题景和意义,设法用数学语言来描述问题.(2) 简化假设简化假设:理解所给的实际问题之后,领:理解所给的实际问题之后,领悟背景中反映的实质,需要对问题作必要的悟背景中反映的实质,需要对问题作必要的简化,有时要给出一些恰当的假设,精选问题简化,有时要给出一些恰当的假设,精选问题中关键或主要的变量中关键或主要的变量.(3) 数学建模:把握新信息,勇于探索,善于联数学建模:把握新信息,勇于探索,善于联想,灵活化归,根据题意建立变
18、量或参数间的想,灵活化归,根据题意建立变量或参数间的数学关系,实现实际问题数学化,引进数学符数学关系,实现实际问题数学化,引进数学符号,构建数学模型,常用的数学模型有方程、号,构建数学模型,常用的数学模型有方程、不等式、函数不等式、函数.归纳总结中学数学建模的主要步骤归纳总结中学数学建模的主要步骤(1) 理解问题理解问题:阅读理解,读懂文字叙述,认:阅读理解,读懂文字叙述,认真审题,理解实际背景真审题,理解实际背景.弄清楚问题的实际背弄清楚问题的实际背景和意义,设法用数学语言来描述问题景和意义,设法用数学语言来描述问题.(2) 简化假设简化假设:理解所给的实际问题之后,领:理解所给的实际问题之
19、后,领悟背景中反映的实质,需要对问题作必要的悟背景中反映的实质,需要对问题作必要的简化,有时要给出一些恰当的假设,精选问题简化,有时要给出一些恰当的假设,精选问题中关键或主要的变量中关键或主要的变量.(3) 数学建模数学建模:把握新信息,勇于探索,善于联:把握新信息,勇于探索,善于联想,灵活化归,根据题意建立变量或参数间的想,灵活化归,根据题意建立变量或参数间的数学关系,实现实际问题数学化,引进数学符数学关系,实现实际问题数学化,引进数学符号,构建数学模型,常用的数学模型有方程、号,构建数学模型,常用的数学模型有方程、不等式、函数不等式、函数.归纳总结中学数学建模的主要步骤归纳总结中学数学建模
20、的主要步骤(4) 求解模型:求解模型:以所学的数学性质为工具对建以所学的数学性质为工具对建立的数学模型进行求解立的数学模型进行求解.(5) 检验模型:将所求的结果代回模型之中检检验模型:将所求的结果代回模型之中检验,对模拟的结果与实际情形比较,以确定验,对模拟的结果与实际情形比较,以确定模型的有效性,如果不满意,要考虑重新建模型的有效性,如果不满意,要考虑重新建模模.(6) 评价与应用:如果模型与实际情形比较吻评价与应用:如果模型与实际情形比较吻合,要对计算的结果作出解释并给出其实际合,要对计算的结果作出解释并给出其实际意义,后对所建立的模型给出运用范围意义,后对所建立的模型给出运用范围.如果
21、如果模型与实际问题有较大出入,则要对模型改模型与实际问题有较大出入,则要对模型改进并重复上述步骤进并重复上述步骤.归纳总结中学数学建模的主要步骤归纳总结中学数学建模的主要步骤(4) 求解模型:求解模型:以所学的数学性质为工具对建以所学的数学性质为工具对建立的数学模型进行求解立的数学模型进行求解.(5) 检验模型:检验模型:将所求的结果代回模型之中检将所求的结果代回模型之中检验,对模拟的结果与实际情形比较,以确定验,对模拟的结果与实际情形比较,以确定模型的有效性,如果不满意,要考虑重新建模型的有效性,如果不满意,要考虑重新建模模.(6) 评价与应用:如果模型与实际情形比较吻评价与应用:如果模型与
22、实际情形比较吻合,要对计算的结果作出解释并给出其实际合,要对计算的结果作出解释并给出其实际意义,后对所建立的模型给出运用范围意义,后对所建立的模型给出运用范围.如果如果模型与实际问题有较大出入,则要对模型改模型与实际问题有较大出入,则要对模型改进并重复上述步骤进并重复上述步骤.归纳总结中学数学建模的主要步骤归纳总结中学数学建模的主要步骤(4) 求解模型:求解模型:以所学的数学性质为工具对建以所学的数学性质为工具对建立的数学模型进行求解立的数学模型进行求解.(5) 检验模型:检验模型:将所求的结果代回模型之中检将所求的结果代回模型之中检验,对模拟的结果与实际情形比较,以确定验,对模拟的结果与实际情形比较,以确定模型的有效性,如果不满意,要考虑重新建模型的有效性,如果不满意,要考虑重新建模模.(6) 评价与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年厂房转租赁协议范本
- 2024年度公司车辆租赁协议样本
- 2024道路安全员招聘协议样本
- 2024年聘用协议规范化样本
- 2023-2024学年郑州市高三下学期5月月考数学试题(A卷)
- 2024安全生产与环保综合管理协议
- 二手车交易过户协议范本2024
- 2024年度专项宣传品订制协议
- 2024年项目实施阶段服务协议范本
- 天津市河北区2024-2025学年高二上学期11月期中英语试题(无答案)
- 部编版道德与法治四年级上册第一单元作业设计
- 《坠积性肺炎研究(论文)》
- SB/T 10379-2012速冻调制食品
- GB/Z 18620.1-2008圆柱齿轮检验实施规范第1部分:轮齿同侧齿面的检验
- GB/T 6009-2003工业无水硫酸钠
- GB/T 31004.1-2014声学建筑和建筑构件隔声声强法测量第1部分:实验室测量
- GA 282-2009警用服饰领带
- 2023年山东省春季高考财经类专业知识试题
- 电子商务师2023年考试模拟试题及答案
- 四年级安全教育教案洪水来了巧逃生
- 《农业政策法规》课件
评论
0/150
提交评论