电磁场数值分析谢拥军2_第1页
电磁场数值分析谢拥军2_第2页
电磁场数值分析谢拥军2_第3页
电磁场数值分析谢拥军2_第4页
电磁场数值分析谢拥军2_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1-2-The description of a scattering problem Xie, Yongjun(谢拥军)Department of Microwave Telecommunication Engineering2Quick summary of last class (I)incEincHk00r0r0sEsH3Quick summary of last class (II)How to describe the electromagnetic problems?Maxwells equations and boundary conditionsVolumetric equi

2、valence principleThe inhomogenerous material can be replaced by equivalent induced sources radiating in free space4General description of a scattering problem (I)Splitting the fields into two partsOne associated with the primary source located somewhere outside the scattererAnother associated with t

3、he equivalent induced sourceIncident fieldsincEincHScattered fieldsssHE5General description of a scattering problem (II)The original fields in the presence of the scatterer can be written as:sincsincHHHEEE(2.1)(2.2)where002222incincincincHkHEkE(2.3)(2.4)00220022jKKjJHkHKjJJjEkEssss(2.5)(2.6)6General

4、 description of a scattering problem (III)Some additional explanations:(1) The vector Laplacian:EEE2(2.7)(2)our interests is the case of an excitation produced by some source in the far zone. Often, we will consider the incident field to be a uniform plane wave.(3) Radiation conditions in a three-di

5、mensional problemssrssrHjkHrEjkErlimlim(2.8)(2.9)where r is the conventional spherical coordinate variable.7General description of a scattering problem (IV)(4) Radiation conditions in a two-dimensional problemszszszszHjkHjkEElimlim(2.10)(2.11)(the Sommerfeld radiation conditions)For the TM and TE po

6、larizations, respectively, where is the radial variable in cylindrical coordinates.8Source-field relationships in homogeneous space - a first form (I)How to solve equations (2.5) and (2.6)?The classical approach is to express the fields in terms of the magnetic vector potential and the electric vect

7、or potential .according to AFFjAkAEs02(2.12)02jFkFAHs(2.13)And the vector potential satisfyKFkFJAkA2222(2.14)(2.15)9Source-field relationships in homogeneous space - a first form (II)The solution to equations (2.14)and (2.15) satisfying the radiation condition can be concisely written in the form GK

8、FGJA*(2.16)(2.17)where the scalar function G is the well-known three-dimensional Greens functionreGrjk4(2.18)And the asterisk (*)denote three-dimensional convolution, that is, rdrerJrArrjk4(2.19)10Source-field relationships in homogeneous space - a first form (III)The two-dimensional Greens function

9、 is kHjG2041(2.20)To summarize, the above procedure is the integration-followed-by-differentiation procedure, which is NOT well suited for numerical implementation.11Source-field relationships in homogeneous space - a second form (I)As an alternative to the pure vector potential source-field relatio

10、nship, a mixed-potential formulism can be developedmsesFjAHFAjE00(2.21)(2.22)where and are scalar potential functions and given byemGGmmee*00(2.23)(2.24)where the asterisk again denotes multidimensional convolution. 12Source-field relationships in homogeneous space - a third form (I)Using an analogy

11、 between Equations (2.14) and (2.15) and their general solutions ( 2.16) and (2.17)and vector Helmholtz equations appearing in (2.5) and (2.6). Formally, we can write the solutions to Equations (2.5) and (2.6) directly asGjKKjJHGKjJJjEss*0000(2.25)(2.26)A differentiation followed by an integration.1

12、3Source-field relationships in homogeneous space - a fourth form (I)A simple interchange of integration and differentiation results inmkmjsekejsGKGJHGKGJE*(2.27)(2.28)Where and are the dyadic Greens functions for the electric field, symbolically denotedGIGGIkjGekej201and and are the dyadic Greens functions for the magnetic field,GIkjGGIGmkmj201(2.29)(2.30)(2.31)(2.32)14Duality relationshipsPrinciple of Duality: the equations describing electromagnetic fields remain valid if all the quantities in the left

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论