




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第六章 二阶线性偏微分方程的分类与小结一 两个自变量的二阶线性方程1 方程变换与特征方程两个自变量的二阶线性偏微分方程总表示成它关于未知函数及其一、二阶偏导数都是线性的,其中都是自变量的已知函数,假设它们的一阶偏 导数在某平面区域内都连续,而且不全为0 。设是内给定的一点,考虑在的领域内对方程进行简化。取自变量变换,其中它们具有二连续偏导数,而且在处的雅可比行列式。=根据隐函数存在定理,在领域内存在逆变换,因为,将代入使其变为经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以不全为0。并可验证这表明,在可逆变换下与保持相同的正负号。 定理 在的领域内,不为常数的函数是偏
2、微分方程之解的充分必要条件是:是常微分方程的通解。2 方程的类型及其标准形式根据以上结论简化方程的问题归结为寻求其特征曲线。为此将特征方程分解成两个方程:,(1) 若在的邻域内时,方程可以化为,该式称为双曲线方程的标准形式,其中是自变量的已知函数。(2) 若的邻域内时,可将方程简化成,该式称为抛物型方程的标准形式,其中是自变量的已知函数。(3) 若的邻域内时,可将方程简化成,该式称为椭圆型方程的标准形式,其中是自变量的已知函数。 总之,根据的正负号能将简化成三种标准形式。 定义 若在区域中点处满足(或是=0,或是0),则称方程在该点处是双曲线的(或是抛物型的,或是椭圆型的)。二 个自变量的二阶
3、线性方程 1 方程的分类个自变量的二阶线性偏微分方程一般可以表示成其中,都是自变量的已知函数,假设它们在维空间中某一区域内连续,而且不全为0。 在区域内某点处,由二阶导数项的系数可构成相应的二次型=其中,而是阶对称矩阵。 定义2 如果在点的二次型为非退化且是不定的,即它恰有个非零特征值,而且特征值的符号不全相同,则称方程在点是双曲线型。如果其中个非零特征值同号,只有一个非零特征值与它们异号,则称方程在点是狭义双曲线型的。如果其中不只一个非零特征值是异号的,则称方程在点是超双曲线型的。 定义3 如果在点的二次型为非退化的,即它至少有一个零特征值,则称方程在点是抛物型。如果只有一个零特征值,而另外
4、个非零特征值同号,则称方程在点是狭义抛物型的。如果是其它有零特征值的情形,则称方程在点是广义抛物型的。 定义4 如果在点的二次型为正定或负定的,即它恰有个同号的非零特征值,则称方程在点是椭圆型的。 2 方程的简化 当方程中二阶偏导数项的系数全是常数时,相应的二次型是常系数实二次型。根据线性代数的理论,运用配方法或者正交变换法,总可找到一个可逆线性变换,即其中是可逆矩阵,将二次型化成标准形,即= 其中=,而且=1或-1或0。 可取转置矩阵构造自变量可逆线性变换,即,就能将在区域内方程简化为+。三小结前面各章的各种定解问题具有的一个共同的特点偏微分方程与定解条件关于未知函数及其导数都是线性的,称这些业解问题都是线性问题。线性问题普遍成立有叠加原理。叠加原理是前面各章介绍的各种方法的基础。另一方面,二阶偏微分方程可以分成双曲线型、抛物型和椭圆型,由于它们描述了物理与工程技术中不同的自然现象,所以,它们不仅在二阶偏导数项系数的代数方面有差异,而且在定解条件与性态方程有本质区别。常系数齐次波动方程、热传导方程和拉普拉斯方程分别是三类方程的典型代表。为了使定解问题能反映实际现象的客观规
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 邮政快递运营管理专业教学标准(高等职业教育专科)2025修订
- 2024-2025学年黑龙江龙东十校联盟高二下学期4月月考政治试题及答案
- 2025年中国家用光子脱毛机器行业市场全景分析及前景机遇研判报告
- 中国汽车排气喉行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 2025年中国新疆区物业管理行业市场全景监测及投资策略研究报告
- 2025年中国便利店行业现状分析及赢利性研究预测报告
- 2019-2025年中国猪肉深加工行业市场深度分析及发展前景预测报告
- 2025年中国经纬仪及视距仪市场供需格局及未来发展趋势报告
- 2025年中国刀具磨床行业市场深度分析及投资潜力预测报告
- 2025年 湖北武汉经济技术开发区招聘教师考试试题附答案
- 提高领导干部调查研究能力讲座课件
- 2022更新国家开放大学电大【护理伦理学】形考任务2试题及答案
- 司法鉴定检测实验室资质认定项目分类表
- 2022-2023学年部编版高中语文必修上册第1-2课(群文阅读)课件27张
- 国际税收教学课件汇总完整版电子教案
- DG-TJ 08-2113-2021 逆作法施工技术标准
- 信息战、密码技术与计算机病毒
- 2021-2022学年北京市朝阳区五年级下学期期末语文试卷
- 投资组合管理课件
- 第五讲静电场中的电介质电位移介质中的高斯定理
- 人教版小学英语3~6年级单词汇总(音标版)
评论
0/150
提交评论