勾股定理教学设计模板_第1页
勾股定理教学设计模板_第2页
勾股定理教学设计模板_第3页
勾股定理教学设计模板_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、聚焦教学难点的教学设计课题名称:勾股定理姓名:张迪工作单位:黄骅市羊二庄镇中学学科年级:八年级教材版本:人教版一、教学内容分析(简要说明课题来源、学习内容、这节课的价值以及学习内容的重要性)这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。我国古代在数学方面

2、又许多杰出的研究成果,对于勾股定理的研究就是一个突出的例子教学中可以介绍我国古代在勾股定理的证明和应用方面取得的成就和作出的贡献,以培养学生的民族自豪感;围绕证明勾股定理的过程,培养学生学习数学的热情和信心学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解. 二、教学目标(从知识与技能、过程与方法、情感态度与价值观三个维度对该课题预计要达到的教学目标做出一个整体描述) ·知识与技能探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用·过程与方法(1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。 (2)在

3、探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学过程,并体会数形结合和从特殊到一般的思想方法·情感态度与价值(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。 (2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。三、学习者特征分析(说明学习者在知识与技能、过程与方法、情感态度等三个方面的学习准备(学习起点),以及学生的学习风格。最好说明教师是以何种方式进行学习者特征分析,比如说是通过平时的观察、了解;或是通过预测题目的编制使用等)勾股定

4、理是反映直角三角形三边关系的一个特殊的结论在正方形网格中比较容易发现以等腰直角三角形三边为边长的正方形的面积关系,进而得出三边之间的关系但要从等腰直角三角形过渡到网格中的一般直角三角形,提出合理的猜想,学生有较大困难学生第一次尝试用构造图形的方法来证明定理存在较大的困难,解决问题的关键是要想到用合理的割补方法求以斜边为边的正方形的面积因此,在教学中需要先引导学生观察网格背景下的正方形的面积关系,然后思考没有网格背景下的正方形的面积关系,再将这种关系表示成边长之间的关系,这有利于学生自然合理地发现和证明勾股定理四、教学策略选择与设计(说明本课题设计的基本理念、主要采用的教学与活动策略)勾股定理的

5、内容是:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么 a+b=c它揭示了直角三角形三边之间的数量关系在直角三角形中,已知任意两边长,就可以求出第三边长勾股定理常用来求解线段长度或距离问题勾股定理的探究是从特殊的等腰直角三角形出发,到网格中的直角三角形,再到一般的直角三角形,体现了从特殊到一般的探探索、发现和证明的过程证明勾股定理的关键是利用割补法求以斜边为边长的正方形的面积,教学中要注意引导学生通过探索去发现图形的性质,提出一般的猜想,并获得定理的证明我国古代在数学方面又许多杰出的研究成果,对于勾股定理的研究就是一个突出的例子教学中可以介绍我国古代在勾股定理的证明和应用方面取得的

6、成就和作出的贡献,以培养学生的民族自豪 感。围绕证明勾股定理的过程,培养学生学习数学的热情和信心五、教学重点及难点(说明本课题的重难点)重点是二元一次方程组的意义和二元一次方程组解的概念。难点是利用列表尝试的方法求简单二元一次方程组的解。六、教学过程(这一部分是该教学设计方案的关键所在,在这一部分,要说明教学的环节及所需的资源支持、具体的活动及其设计意图以及那些需要特别说明的教师引导语)教师活动预设学生活动设计意图教学环节1创设情境探索新知出示第24届国际数学家大会的会徽的图案向学生提问(1) 你见过这个图案吗?(2) 你听说过“勾股定理”吗?学生思考回答目的在于从现实生活中提出“赵爽弦图”,

7、进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。教学环节2实验操作获取新知归纳验证完善新知出示课件,引导学生探索方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。S正方形_方法二;已知:在ABC中,C=90°,A、B、C的对边为a、b、c。求证:a2b2=c2。分析:左右两边的正方形边长相等,则两个正方形的面积相等。左边S=_右边S=_左边和右边面积相等,即化简可得。归纳:勾股定理的具体内容是 。猜想实验合作交流画图测量拼图验证渗透从特殊到一般的数学思想为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,

8、培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的欲望给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。教学环节3解决问题应用新知出示例题和练习1.如图,直角ABC的主要性质是:C=90°,(用几何语言表示)两锐角之间的关系: ;(2)若B=30°,则B的对边和斜边: ;(3)三边之间的关系: 2.完成书上P69习题1、2交流合作,解决问题通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源

9、于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识教学环节4课堂小结巩固新知布置作业引导学生小结作业1.在RtABC中,C=90°若a=5,b=12,则c=_;若a=15,c=25,则b=_;若c=61,b=60,则a=_;若ab=34,c=10则SRtABC =_。2.已知在RtABC中,B=90°,a、b、c是ABC的三边,则c= 。(已知a、b,求c)a= 。(已知b、c,求a)b= 。(已知a、c,求b)3.直角三角形两直角边长分别为5和12,则它斜边上的高为_。4.已知一个Rt的两边长分别为3和4,则第三边长的平方是

10、() A、25B、14C、7D、7或255.等腰三角形底边上的高为8,周长为32,则三角形的面积为() A、56B、48C、40D、32讨论交流、自由发言既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导七、教学评价设计(创建量规,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。也可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价)本节课,我从学生身边的生活入手引入出发,以学生自主探索、合作交流为主线,让学生经历数学知识的形成与应用过程,加深对所学知识的理解,从而突破重难点。整节课是一个动脑猜想、动眼观察、动手操作、实践验证、巩固应用的动态生成过程,充分发挥了学生的主观能动性,学生真正成为了学习的主人。八、板书设计(本节课的主板书).

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论