数学解题思维障碍的突破技巧[全国通用]doc_第1页
数学解题思维障碍的突破技巧[全国通用]doc_第2页
数学解题思维障碍的突破技巧[全国通用]doc_第3页
数学解题思维障碍的突破技巧[全国通用]doc_第4页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数学解题思维障碍的突破技巧 全国通用 摘要:数学解题能力是衡量学生数学能力高低的一个重要指标, 当前高考的能力立意命题也说明高中数学教学要更多的关注学生的数学能力本次讲座我们研究下面三个问题:高中数学解题的思维策略数学思维障碍的成因与突破高中数学复习的几点建议正文:一 高中数学解题的思维策略数学思维的变通性根据题设的相关知识,提出灵活设想和解题方案数学问题千变万化, 要想既快又准的解题, 总用一套固定的方案是行不通的, 必须具有思维的变通性善于根据题设的相关知识,提出灵活的设想和解题方案(1 )善于观察(2006,重庆,理, 12)若 a, b,c0 且 a(abc)bc42 3, 则 2ab

2、c 的最小值为()A31B31C232D232【分析】看到给定的条件,感觉应该使用均值不等式求最小值,但变形过程受阻,得不到待求的结构【点拨】由 a, b,c0 且 a( ab c)bc42 3, 得: a2ab ac bc 4 2 3 a2ab ac bc1 (4a24ab4ac2bc2bc)4 1 (4a24ab4ac2bcb2c2 )41 (2a b c)24 (2 3 2) 2 (2 a b c)2 ,则 ( 2a b c ) 23 2 或者由 a(abc) bc423 得 ( ac)( a b)4 23 又 a, b, c0 ,(ac ) a(b2ab c 2c 时取等号) (当)且

3、仅当 b22abc24232 (3 解1)题的关键是发现已知条件和待证结论的变形的具体方向,发现两者之间的关系【答案】 D心理学告诉我们: 感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提任何一道数学题,都包含一定的数学条件和关系要想解决它,就必须依据题目的具体特征, 对题目进行深入的、细致的、 透彻的观察, 然后认真思考, 透过表面现象看其本质,这样才能确定解题思路,找到解题方法(2 )善于联想(2002 天津理科 16)已知函数 fxx 2,那么21xf 1 f 2 f 1f

4、3f 1f 4f 1。234【分析】由于设定的问题较简单,可以直接分别求值,再求和;但问题是,如果待求的和式较复杂怎么办?1【点拨】联想数列的求和方法,不难发现该式隐藏的秘密所在:f (x)f ()1 。x【答案】7 。2联想是问题转化的桥梁稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入(3 )善于将问题进行转化(2004,全国一, 12)已知 a 2b 21, b 2c 22,c 2a 22, 则 ab bc ca 的最小值为()A 31B1 3C 1 3D1+

5、32222【分析】由于受给定条件的暗示,考生多第一感觉选择利用重要不等式求最值于是联想到 abbcca a2b2c2 ,只能得到 ab bcca 的最大值,似乎求最小值还需更进一步变形,结果走上不归路,求解失败【点拨】再次研究给定的条件,发现由a2b21,b2c22, c2a22 可以得到 a、b、c 的值,即待求目标只能取有限个值,从其中挑选最大的得到最大值,挑选最小的得到最小值【答案】 B数学家G .波利亚在怎样解题中说过:数学解题是命题的连续变换可见,解题过程是通过问题的转化才能完成的 转化是解数学题的一种十分重要的思维方法 那么怎样转化呢?概括地讲, 就是把复杂问题转化成简单问题, 把

6、抽象问题转化成具体问题, 把未知问题转化成已知问题在解题时,观察具体特征,联想有关问题之后,就要寻求转化关系思维变通性的对立面是思维的保守性,即思维定势思维定势是指一个人用同一种思维方法解决若干问题以后,往往会用同样的思维方法解决以后的问题它表现就是记类型、记方法、套公式,使思维受到限制,它是提高思维变通性的极大的障碍,必须加以克服综上所述,善于观察、善于联想、善于进行问题转化,是数学思维变通性的具体体现要想提高思维变通性,必须作相应的思维训练数学思维的反思性提出独特见解,检查思维过程,不盲从、不轻信(2004 湖北卷理科 6) 已知椭圆x 2y 2F1、 F2,点 P 在椭圆上,161的左、

7、右焦点分别为9若 P、 F1、 F2 是一个直角三角形的三个顶点,则点P 到 x 轴的距离为(A) 9( B)3(C)9 7(D) 9574【分析】学生一般会认为P 为直角顶点,从而公式 S b2tan 求解得到答案C;2【点拨】通过选项分析, 若直角顶点不确定, 则应有多个值可选择,而答案没有提供多值选项,因此,直角顶点是确定的从图形分析可知,必为焦点,因为有的椭圆并不存在张角为直角的点,于是得到正确答案半个通径【答案】 D(2004 湖南理 20)直线 l :ykx1与双曲线 C:2x 2y 21 的右支交于不同的两点A 、B 求实数 k 的取值范围;【解析】将直线l 的方程 ykx1代入

8、双曲线C 的方程 2x 2y 21 后,整理得 :(k 22) x22kx20 依题意,直线 l 与双曲线 C 的右支交于不同两点, 注意到 x2,应该利用根的分布求解 而2我们多利用韦达定理求解k 220(2 k) 28(2k 2)02k0,解得 k 的取值范围为2 k2 k 2220k 22数学思维的反思性表现在思维活动中善于提出独立见解,精细地检查思维过程, 不盲从、不轻信 在解决问题时能不断地验证所拟定的假设,获得独特的解决问题的方法,它和创造性思维存在着高度相关本讲重点加强学生思维的严密性的训练,培养他们的创造性思维受思维定势或别人提示的影响,解题时盲目附和,不能提出自己的看法,这不

9、利于增强思维的反思性 因此,在解决问题时, 应积极地独立思考,敢于对题目解法发表自己的见解,这样才能增强思维的反思性,从而培养创造性思维数学思维的严密性考察问题严格、准确,运算和推理精确无误(2004,全国一, 15)已知数列 a n ,满足a1=1, an=a1+2a2+3a3+ +(n 1)an 1(n 2) ,求 a n的通项公式【分析】对a1+2a2+3a3+(n 1)an 1 认识不清,看不到本质,没法进行下去;利用条件an=a1+2a2+3a3+ +(n 1)an1,得到 an 1=a1+2a2+3a3+ +(n 2)an 2,两式相减得到 annanann ,1 ,即an1再由迭

10、乘法 a2a3a4an2 34n ,a1a2a3an 1于是 ann! 【点拨】数列是一类特殊的函数,研究数列也应有定义域优先意识,利用给定的条件an=a1+2a2 +3a3 + +(n 1)an 1 ,得到an 1=a1+2a2+3a3+ +(n 2)an 2,它们都是有条件的,并不是对所有的正自然数都成立的对数列而言,一般要考虑小项数从1 开始,因此、的成立条件分别是n 2、 n3、 n 3忽视对项数的限制,必然得到错误的结果n!n2 【答案】 an21n1在中学数学中, 思维的严密性表现为思维过程服从于严格的逻辑规则,考察问题时严格、准确, 进行运算和推理时精确无误数学是一门具有高度抽象

11、性和精密逻辑性的科学,论证的严密性是数学的根本特点之一但是, 由于认知水平和心里特征等因素的影响,中学生的思维过程常常出现不严密现象,主要表现在以下几个方面:概念模糊概念是数学理论体系中十分重要的组成部分它是构成判断、 推理的要素 因此必须弄清概念,搞清概念的内涵和外延,为判断和推理奠定基础概念不清就容易陷入思维混乱,产生错误判断错误判断是对思维对象的性质、关系、状态、存在等情况有所断定的一种思维形式数学中的判断通常称为命题在数学中,如果概念不清,很容易导致判断错误例如,“函数 y( 1) x 是一个减函数”就是一个错误判断3推理错误 推理是运用已知判断推导出新的判断的思维形式它是判断和判断的

12、联合任何一个论证都是由推理来实现的,推理出错,说明思维不严密数学思维的开拓性对一个问题从多方面考虑、 对一个对象从多种角度观察、 对一个题目运用多种不同的解法(2006 全国卷一理科9)设平面向量a1 、a2 、a3 的和 a1 a2a30 如果向量 b1 、b2 、b3,满足 bi2ai ,且 ai 顺时针旋转30o 后与 bi 同向,其中 i1,2,3 ,则A b1b2b3 0 B b1 b2b30 C b1 b2 b30 D b1b2b30【分析】向量 a1 、 a2 、 a3的和 a1a2a3 0 向量 a1 、 a2 、 a3 顺时针旋转30 后与 b1、b2 、 b3 同向,且 b

13、i2 ai,得不到 b1 、 b2 、 b3 的具体表示b1b2b30 【点拨】其实,考查选项发现:减号的位置放到哪?为什么会出现减号?力的合成问题!【答案】 D(2006 全国卷一理科11)用长度分别为2、3、4、 5、6(单位: cm )的 5 根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为A 8 5cm2B 6 10cm2C 3 55cm2D 20cm2【分析】我们知道,当周长一定时,三边越接近,其面积越大,这是等周问题中的一个基本结论。【点拨】实际上,根据海伦公式,可以证明上述结论。用2、5 连接, 3、 4 连接各为一边,第三边长为7 组成三角形,此三

14、角形面积最大,面积为6 10cm2 ,选 B. 显然,这并不是规定的考试内容,也就是说,并没有确定的知识用于本题的解答。它谁说不是课本中的定理,却是定理的背景, 是定理产生的实践基础,在书上的阅读材料 “算术几何平均不等式”中,就不难看到上述事实。【答案】 B2007 考试大纲,在知识要求中,增加了知识相关背景的认识,要求学生学习数学知识的同时,应了解知识的背景。数学思维开拓性指的是对一个问题能从多方面考虑;对一个对象能从多种角度观察;一个题目能想出多种不同的解法,即一题多解“数学是一个有机的整体,它的各个部分之间存在概念的亲缘关系我们在学习每一分支时,注意了横向联系,把亲缘关系结成一张网,就

15、可覆盖全部内容,使之融会贯通”这里所说的横向联系,主要是靠一题多解来完成的通过用不同的方法解决同一道数学题,既可以开拓解题思路,巩固所学知识;又可激发学习数学的兴趣和积极性,达到开发潜能,发展智力,提高能力的目的从而培养创新精神和创造能力在一题多解的训练中,我们要密切注意每种解法的特点,善于发现解题规律,从中发现最有意义的简捷解法数学思维的开拓性主要体现在:(1)一题的多种解法(2)一题的多种解释对,二数学思维障碍的成因与突破1由于数学思维的肤浅性所致(2006,上海,理, 12)三个同学对问题 “关于 x 的不等式x 2 25 | x 3 5 x2 | ax 在1 ,12上恒成立,求实数a

16、的取值范围”提出各自的解题思路甲说:“只须不等式左边的最小值不小于右边的最大值”乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值”丙说:“把不等式两边看成关于x 的函数,作出函数图像”参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是【分析】本题的出现使人耳目一新,特给出问题的解决过程,就解题的直觉而言,解一道题应有多种思路, 其中有效的做法是什么?简洁的做法是什么?这就需要从感性到理性,做出正确的判断。 如果学生对给出的问题认识不清,自然就不会得出正确的判断,从而胡乱的按照某人的解法从事。【点拨】 认真研究, 不难发现甲的解题思路不对,因为甲给出的是

17、充分条件,不是必要条件。如果按照甲的思路,可能会缩小a 的范围;丙的解题思路正确,是充要条件,不会改变a 的范围。但实施起来非常麻烦,可能需要更长的解题时间;再看乙的解题思路,符合分离变量的解题技巧,得到的是充要条件,因此应该按照乙的解题思路进行解题。由x2 25 |x3 5x 2|ax,1x 12ax25| x 25 x | ,x1x12 。设 f (x)x25| x25x | , 1x12。只需求得函数f ( x)的最小值即可。x【答案】下面考虑常规解法,去绝对值,利用导数求得最小值等等。注意到x252 x2510,等号当且仅当x51,12 时成立;xx且 | x25x |0 ,等号当且仅

18、当x5 1,12 时成立;所以,a x25x|x25x|min10,等号当且仅当x51,12 时成立;故 a(,10;当 x25取最小值时,| x25x |也恰好取得最小值,这种解题的方法到底是通法,还是x技巧呢?是提倡,还是不提倡呢?2由于数学思维的差异性所致(2006,全国卷二 ,理 20)设函数 f(x) (x 1)ln(x 1),若对所有的x 0,都有 f(x) ax 成立,求实数 a 的取值范围【分析】在命制导数问题中,既没有“导数”字样或符号的直接提示,也没有“切线”、“单调性”、“极值、 最值” 等的间接提示, 使得思维的方向一时不能明朗,给解题带来一些障碍。可以看到, 近几年考

19、查导数的解答题,对学生的审题能力的要求更高,呈现能力立意的味道更浓。解法一: 令 g(x) (x 1)ln(x 1) ax,若对所有的x 0,都有 f(x) ax 成立,只需函数g(x)在 x 0 上的最小值 0 即可。对函数 g(x) 求导数: g(x)ln(x 1)1 a,令 g(x) 0,解得 x ea 11,不知如何操作以求得函数g(x) 的最小值,解题受阻。【点拨】 (i) 当 a 1 时,对所有x 0, g(x) 0,所以 g(x) 在 0, )上是增函数,又 g(0) 0,所以对 x0,都有 g(x) g(0) ,即当 a1 时,对于所有x 0,都有 f(x) ax(ii) 当

20、a 1 时,对于 0 x ea 1 1,g(x) 0,所以 g(x)在 (0, ea 1 1)是减函数,又 g(0) 0,所以对 0x ea1 1,都有 g(x) g(0),即当 a1 时,不是对所有的x 0,都有 f(x) ax 成立综上, a 的取值范围是( , 1解法二:令 g(x) (x 1)ln(x 1) ax,注意到 g(0) 0,于是不等式 f(x) ax 成立即为 g(x) g(0)成立对函数 g(x) 求导数: g(x) ln(x 1) 1 a,不知如何操作,解题受阻。【点拨】令g(x) 0,解得 x ea 1 1,转化为研究函数g(x) 的单调性问题。当 xea1 1 时,

21、 g(x) 0, g(x) 为增函数,当 1 x ea 1 1, g(x) 0, g(x) 为减函数,所以要对所有x 0 都有 g(x) g(0)充要条件为 ea1 1 0由此得 a 1,即 a的取值范围是 ( , 1另解:当 x 0 时, f(0) 0,对任意的 aR,都有 f(x) ax 成立;当 x 0 时,f(x) ax 等价于 af (x),构造函数 g (x)f (x) ( x1)ln( x 1), x 0 。xxx下面求函数 g(x) 在 x 0 上的值域。xl n x(1)g (x)x2,令 g (x) 0,不会解方程!构造函数 h( x)xln( x1), x0 , h (

22、x)11x0,h( x) 为 (0,) 上的单调增函数,1xx1注意到 h(0)0 ,h( x)0 对 x 0 恒成立。因此, g ( x)0 对 x 0 恒成立,即函数g(x) 为 (0,) 上的单调增函数。如何求函数g(x) 的“最小值”呢,g(x) 在 x 0 处没有定义,怎么办? lim g( x)lim ( x 1)ln( x 1)lim f ( x)f (0)f ( x) |x 0 1 ,x 0x 0xx 0x0 g( x) 1对 x 0 恒成立。f ( x)对 x 0 恒成立。 a 1, ax综上所述,对所有的x 0,都有 f(x) ax 成立, a 的取值范围是 ( , 1(2

23、007 全国卷一理科 20)设函数 f ( x) exe x ()证明:f ( x) 的导数 f (x) 2 ;()若对所有x 0 都有 f ( x) ax ,求 a 的取值范围【解析】() f (x) 的导数f (x)exe x 由于 exe-x 2 ex e x2 ,故 f (x) 2 (当且仅当 x0 时,等号成立) ()令 g (x)f (x)ax ,则g ( x)f (x) a exe xa ,()若 a 2,当 x0 时, g ( x) exe xa2 a 0 ,故 g( x) 在 (0, ) 上为增函数,所以, x 0时, g( x) g(0) ,即 f ( x) ax ()若

24、a2 ,方程 g (x)0 的正根为 x1 ln aa24 ,2此时,若 x(0, x1) ,则 g ( x) 0 ,故 g (x) 在该区间为减函数所以, x (0, x1) 时, g ( x)g (0)0,即 f (x)ax ,与题设 f ( x) ax 相矛盾综上,满足条件的 a 的取值范围是,2【解析】解:对任意 x 0,都有 f ( x)ax ,即 exe xax 成立 . 当 x 0时, 0 0 成立 当 x0时, f (x)ax 恒成立,即f ( x)exe xa恒成立xxx令 eexxex ( x1)e x ( x1),则x2当 x1时, 0,(x) 为 (0,1) 上增函数

25、.a1,(x) min(1)ee 1e即 ae当0x 1时,令x (x1)ex (x1),则 txx)t ex(e ex (0,1),exe x, 即 t0 , 即 t( x)为(0,1)增函数.tmint (0) 0 , 即t 0 ( x ( 0 , 1. ) 0,即 ( x) 为 (0,1) 上增函数 .(x)min(0)又exe x(exe x ) (e0e 0 )xx0,limx)limlim(ee) |x 0e(xx022x 0x0x0所以使 aexe x2x恒成立,即 a由可知 a2 .综上所述, a2(2006,重庆,理, 20)已知函数 f ( x)x2bxcex ,其中 b,

26、 cR 为常数。若 b24(c1) ,且 limf ( x)c4 ,试证:6 b2。x0x【分析】由给定的条件和待证的目标,容易想到应该消去c,从而构造出关于b 的不等式,利用求解不等式的解,得到待证的目标。 解题的障碍就是对于给定的极限式0 型无从下0手,得不到c 与 b 的具体关系。 一般地,对于0 型极限,求解的关键是想办法在分子分母中0消去零因子,但本题没有办法如此处理。【点拨】注意到f (0)c ,则有 lim f ( x)clim f (x)f(0)f (0) 。x 0xx 0x0又 f ( x) x2bxc ex ,故得: f ( x) x2(b 2) xbcex 。f (0)b

27、c4 ,即 c4b ,又 b24( c1) ,整理得: b24b120解得6b2 。本题所给的极限式使我们联想到导数的定义,回归定义, 回归本源, 是数学命题的一个重要的着力点。3由于思维定势的消极性所致(2005 广东 18) 箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比为 s: t 现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则将其放回箱中, 并继续从箱中任意取出一个球,但取球的次数最多不超过n 次以表示取球结束时已取到白球的次数求的分布列;【解析】的所有允许取值依次为0,1, 2, n。取出黄球的概率是P(A)ss,取t出白球的概率是 P( A)t

28、0)sP(1)st,则 P(,(s t) 2s tstP(2)st 2P(n 1)st n 1P(n)t n( s t ) 3,( s t ) n,(st )n , 的分布列是n1012nsstst 2st n 1t nP(s t )2(s t) 3(s t ) n(s t ) ns t(2005 浙江理科19)袋子 A 中装有若干个均匀的红球和白球,从中摸出一个红球的概率是1 ,3若有放回地摸球,每次摸出一个,有3 次摸到红球即停止记5 次之内 (含 5 次 )摸到红球的次数为,求随机变量的分布列。【解析】随机变量的 取 值 为 0 、 1 、 2 、 3. 由 n 次 独 立 重 复 试

29、验 概 率 公 式Pn(k)=Cnkpk (1p)n k,得P(=0)=C0(1 1)532,53243P( =1)= C51 11 )480(1,33243P( =2)= C52 (1)2 (11)380,P(=3)=13280217.3324324381随机变量的分布列是0123P3280801724324324381(2007 全国卷理科19)S四棱锥 SABCD 中,底面ABCD 为平行四边形,侧面SBC底面 ABCD 已知ABC45,AB2 ,CBC2 2,SA SB3DA()证明 SABC ;()求直线SD 与平面 SAB所成角的大小【解析】解法一:()作 SO BC ,垂足为 O

30、 ,连结 AO ,由侧面 SBC 底面 ABCD ,得 SO 底面ABCD 因为SASBAOBO,S,所以又 ABC45 ,故 AOB 为等腰直角三角形, AO BO ,由三垂线定理,得SA BC CO()由()知SA BC ,依题设 AD BC ,DA故SAAD,由 AD BC 22,SA3, AO2 ,得SO 1, SD11 1 AB1 AB2 SAB的面积 S1SA22 22连结 DB ,得 DAB 的面积 S21 AB AD sin13522设 D 到平面 SAB的距离为 h ,由于 VD SABVS ABD ,得BB112 h S1SO S2 ,解得 h33设 SD与平面 SAB所成

31、角为h222,则 sin11SD11所以,直线 SD 与平面 SBC所成的角为 arcsin22 11三高中数学复习的几点建议1. 加强审题指导,是提高解题能力的必要条件(1) 弄清已知条件和解题目标这包括:有几个已知条件,能否把各个已知条件分开;解题的目标是什么?要求是什么?是否需要画图,如果能画图,最后画图,并在图中标出必要的条件和数据,画图的过程是一个熟悉问题的过程,是一个对已知条件和解题目标再认识的过程.(2004 重庆文14)已知曲线 y1 x34,则过点 P(2, 4)的切线方程是 _.3314本题可以判断点P(2, 4) 在曲线yx3上,所以,大部分同学的解法是,由33y x 2

32、 4 得切线方程为 y44 x2,即4xy 40 .但是 ,这个结果并不完整,这是因为题目并没有告诉点P(2, 4)是否为切点 , 而上面的解法是把点 P(2, 4)当作切点求解的 .其实 ,点 P(2, 4) 也可能不是切点 .正确的解法是 :设切点为x0 , y0,则 yx x0x02,切线方程为 y4x02 x2 .因为 x0 , y0 在切线上 ,则 y04x02x02,从而有1x0344 x032x02 ,33解得 x02, x01 ,于是 , 过点 P(2, 4) 的切线方程为4xy40 和 xy 20 .(2) 注意题目的隐含条件(2006 辽宁理科12)设 O(0,0) , A

33、(1,0) , B(0,1) ,点 P 是线段 AB 上的一个动点, APAB ,若 OP ABPA PB ,则实数的取值范围是(A) 11(B)21 (C)12(D)221121122222【解析】 APABOP(1)OAOB(1, ),PBABAP(1) AB(1,1), APAB(, )OPABPA PB(1,)(1,1) (, )(1,1)2 241 0解得: 122,因点P 是线段 AB 上的一个动点 ,所以 01,即满足条件的212实数的取值范围是21,故选择答案 B.12【点评】本题考查向量的表示方法,向量的基本运算 ,定比分点中定比的范围等等 .可见,审题的第一步就是弄清问题的

34、已知条件和未知条件,在弄清条件时, 对题目一定要字斟句酌,解错这道题,就是因为没有看“求什么”的时候就仓促下笔所以,熟悉问题是审题的重要步骤,在熟悉问的过程中,要弄清已知条件和未知条件,仔细的重复这些已知条件,如果问题与图形有关,还应该画图,在图上标示已知条件和未知条件及符号.(3) 弄清已知条件之间以及已知条件与所求目标之间的相互联系(2005 浙江卷理科10)已知向量 a e ,| e| 1,对任意 t R,恒有 |a t e| |a e |,则(A)a e(B)a ( a e ) (C)e ( a e)(D) ( a e ) ( a e )【解析】常规处理是从|aeae t | |变形得

35、:t 22a et2a e10,A由 tR, 得( 2a e)24 8a e 0aD得 e (a e)0 ,即 a(ae) ,选(C)。ateeBCae反思向量 a e,|e | 1,对任意 tR,恒有 | a t e | | a e|,可以从向量本身的意义来考虑,如图:ABa , ACe ,则 CBae ,设 DB ate ,由题意 | DB | | CB |,仅当 ACCB 时才能实现,即e ( a e )。(4) 思考所求解的题目与以前做过的哪道题目相类似(2004 湖南理科 12)设 f ( x), g( x) 分别是定义在R 上奇函数和偶函数,当x 0时,f ( x) g( x)f

36、(x) g (x)0 ,且 g(3) 0 ,则不等式f ( x) g( x)0的解集是()(A)( 3,0)(3,)(B)( 3,0)( C)( ,3)(3,)( D)(, 3)(0,3)(0,3)这是一个比较生疏的题目,遇到比较生疏的题目就要思考: “平时是否作过类似的问题?”仔细审题, 就会得到 f ( x), g( x) 一为 R 上奇函数,一为 R 上偶函数, 则 F ( x)f ( x) g(x) 为奇函数, 而 f ( x) g (x)f ( x)g ( x)( f ( x)g ( x) F(x)0 ,则 F ( x) 在x 0时为增函数,经过这一分析,再想,是否见过类似的题目呢?

37、回答是,见过这就是:“函数 F (x) 为奇函数, F (3)0 ,且 x0 时, F ( x) 为增函数,求 F ( x)0 的解集”,于是生题变成了熟题,画出图像,不难求出F ( x)0 的解集为( D)总之,审题是解题的一个重要步骤,通过审题,收集信息,加工信息,熟悉题目并深入到题目内部去思考, 就会找到解题的入口,也会在解题的全部过程中,不忽视任何一个细节审题决定成败审题是通向成功的起点,也是成功的归宿2关注解题细节,是提高数学学习能力的必由之路。( 1)研究解题细节,培养学生良好的思维品质( 2004 年,天津卷,理 21)已知定义在R 上的函数f x 和数列 a n 满足下列条件:a1a, anfan1n2,3,4,. , a2a1f anf a n1k anan 1, n 2,3,4,.其中 a 为常数, k 为非零常数 .()令 bnan 1an (nN) ,证明数列bn 是等比数列;()求数列an的通项公式;本题主要考查函数,数列,等比数列和极限等概念,考查灵活应用数学知识分析问题和解决问题的能力。对于第()问,许多同学都是这样证明的:由已知 a n 1 ank a n an

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论