法解常微分方程_第1页
法解常微分方程_第2页
法解常微分方程_第3页
法解常微分方程_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Euler法解常微分方程Euler法解常微分方程算法:Step 1 分别取积分上限、积分下限、步长Step 2计算判断是否成立,成立转到Step 3,否则继续进行Step 4Step 3 计算Step 4 Euler法解常微分方程算程序:function euler2(fun,y0,A,h)%fun-y'%y0-初值%A-x取值范围%a-x左区间端点值%b-x右区间端点值%h-给定步长x=min(A);b=max(A);y=y0;while x<b-h b=y; y=y+h*feval(fun,x,b) x=x+h;end例:用Euler法计算下列初值问题(取步长h=0.2)输入

2、:fun=inline('-y-x*y2') euler2(fun,1,0 0.6,0.2)得到:y = 0.8000y = 0.6144y = 0.4613指导教师: 年 月 日 改进Euelr法解常微分方程改进Euler法解常微分方程算法:Step 1 分别取积分上限、积分下限、步长Step 2 取一个以h为步长,a,b分别为左右端点的矩阵Step 3 (1)做显性Euler预测 (2)将带入Step 4计算判断是否成立,成立返回Step 3,否则继续进行Step 5Step 5 改进Euler法解常微分方程算程序:function gaijineuler2(fun,y0,

3、A,h)%fun-y'%y0-初值%A-x取值范围%a-x左区间端点值%b-x右区间端点值%h-给定步长a=min(A);b=max(A);x=a:h:b;y(1)=y0;for i=1:length(x)-1 w1=feval(fun,x(i),y(i); y(i+1)=y(i)+h*w1; w2=feval(fun,x(i+1),y(i+1); y(i+1)=y(i)+h*(w1+w2)/2;endx=x'y=y'例:用改进Euler法计算下列初值问题(取步长h=0.25)输入:fun=inline('-x*y2') gaijineuler2(fun,2,0 5,0.25)得到:x = 0 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 2.2500 2.5000 2.7500 3.0000 3.2500 3.5000 3.7500 4.0000 4.2500 4.5000 4.7500 5.0000y = 2.0000 1.8750 1.5939 1.2824 1.0096 0.7932 0.6282 0.5037 0.4097 0.3379 0.2824 0.2389 0.2043 0.176

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论