人教版高中数学选修(1-2)-1.1《回归分析的基本思想及其初步应用》教学课件1_第1页
人教版高中数学选修(1-2)-1.1《回归分析的基本思想及其初步应用》教学课件1_第2页
人教版高中数学选修(1-2)-1.1《回归分析的基本思想及其初步应用》教学课件1_第3页
人教版高中数学选修(1-2)-1.1《回归分析的基本思想及其初步应用》教学课件1_第4页
人教版高中数学选修(1-2)-1.1《回归分析的基本思想及其初步应用》教学课件1_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、其初步应用其初步应用回归分析的基本思想及回归分析的基本思想及1.11.1,.().3,.regression analysis我们知道 函数关系是一种确定性关系而相关关系是一种非确定性关系回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法在数学 中 我们对两个具有线性相关关系的变量利用回归分析的方法进行了研究 其步骤为画散点图 求回归直线方程 并用回归直线方程进 行预报:,y,x,y,x,y,xnn2211二乘估计公式分别为二乘估计公式分别为截距和斜率的最小截距和斜率的最小我们知道其回归方程的我们知道其回归方程的关系的数据关系的数据对于一组具有线性相关对于一组具有线性相关探究探究 1

2、xbya 2,xxyyxxbn1i2in1iii?.y, x.yy,xn1xn1iin1ii公公式式吗吗你你能能推推导导出出这这两两个个计计算算称称为为其其中中样本点的样本点的中心中心.心心回归直线过样本点的中回归直线过样本点的中., xy, Qba ,n1i2ii的值取最小值时分别是使和斜率截距从已经学过的知识知道 n1i2iixyxyxy, Q由于2n1iii2iixyxyxyxy2xyxy,xynxyxyxy2xyxy2n1iiin1i2iixyxyxyn1iii注意到n1iiixyxyxyn1in1iiixynxyxy, 0 xynxnynxy2n1i2iixynxyxy, Q所以2n

3、1i2iin1in1ii2i2xynyyyyxx2xx2n1i2in1iiin1i2i2xxyyxxxxxyn.yyxxyyxxn1i2in1i2i2n1iii即有均为当且仅当前两项的值取最小值因此要使数而前两项为非负无关后两项和在上式中, 0,Q, ,.xy,xxyyxxn1i2in1iii.公式这正是我们所要推导的,.下面我们通过案例 进一步学习回归分析的基本思想及其应用.11,81所示重数据如表其身高和体名女大学生从某大学中随机选取例5943616454505748kg/170155165175170157165165cm/87654321体重体重身高身高编号编号,172.cm求根据一名

4、女大学生的身高预报她的体重的回归方程并预报一名身高为的女大学生的体重: ) 11 . 1(.,图图作散点体重为因变量真实取身高为自变量因此选据身高预报体重由于问题中要求根解yx11 . 1图xy.,11 . 1画它们之间的关系刻性回归方程以用线因此可线性相关关系较好的重有比高和体身样本点呈条状分布中可以看出从图 .712.85x 849.0y .849.0b,712.85a ,21于是得到回归方程可以得到和根据探究中的公式.kg316.60712.85172849.0y,cm172,预报其体重为由回归方程可以的女大学生对身高为所以11 . 1图xy?.,849.0y,1x,849.0b的强弱它

5、们之间线性相关关系如何描述性相关关系体重与身高具有正的线这表明个单位就增加体重个单位时每增加说明身高是斜率的估计值为关系数的具体计算公式样本相关系的方法两个变量之间线性相关来衡量我们介绍了用相关系数中在必修.r,3.yyxxyyxxrn1in1i2i2in1iii0,;0,.1,;0,.,0.75.rrrrr当时 表明两个变量正相关 当时表明两个变量负相关 的绝对值越接近 表明两个变量的线性相关性越强 越接近于时 表明两个变量之间几乎不存在线性相关关系通常 当 大于时认为两个变量有很强的线性相关关系,0.798,.r 在本例中 可以计算出这表明体重与身高有很强的线性相关关系 从而也表明我们建立

6、的回归模型是有意义的?,?kg316.60cm172其原因是什么其原因是什么不是不是如果如果吗吗是是女大学生的体重一定女大学生的体重一定的的身高身高探究探究.21 . 1.316.60316.60172,位置说明了这一点本点和回归直线的相互中的样图以认为她的体重接近于但一般可是大学生的体重不一定的女身高显然kgkgcm21 . 1图 3, eabxy:,回归模型来表示可用下面的线性所以身高和体重的关系线的附近而只是散布在某一条直线由于所有的样本点不共,.yxexyxy与函数关系不同 在回归模型中的值由 和随机因素 共同确定 即 只能解释部分 的变化 因此我们把称为解释变量 把 称为预报变量 :

7、.0eD, 0eE,e.abxyye,ba2整表达式为整表达式为这样线性回归模型的完这样线性回归模型的完方差方差它的均值它的均值称为称为为随机变量为随机变量通常通常的误差的误差之间之间与与是是为模型的未知参数为模型的未知参数和和这里这里随机误差随机误差 .eD, 0eE,eabxy2 4 24,5.eybxay在线性回归模型中 随机误差 的方差越小通过回归直线预报真实值 的精度越高随机误差是引起预报.,yy 取决于随机误差的方差取决于随机误差的方差其大小其大小之间的误差的原因之一之间的误差的原因之一与真实值与真实值值值 .yy ,ba,ba 21,另一个原因另一个原因之间误差的之间误差的与真实

8、值与真实值这种误差是引起预报值这种误差是引起预报值之间也存在误差之间也存在误差和和它们与真实值它们与真实值的估计值的估计值为截距和斜率为截距和斜率和和中中和和由于公式由于公式另一方面另一方面?e的原因是什么的原因是什么产生随机误差项产生随机误差项思考思考.,.,的产生差项误机随所有这些因素都会导致是一种近似的模型型往往只我们选用的线性模另外动、度量误差等食习惯、是否喜欢运例如饮许多其他因素的影响还受身高的影响外一个人的体重值除了受实际上e?,如何衡量预报的精度随机误差那么应该怎样研究它是一个不可观测的量误差的预报真实值是用在线性回归模型中探究yye2,.,0,.因为随机误差是随机变量 因此可以

9、通过这个随机变量的数字特征来刻画它的一些总体特征均值是反映随机变量取值平均水平的数字特征 方差是反映随机变量集中于均值程度的数字特征 而随机误差的均值为 因此可以用方差来衡量随机误差的大小 2,.?34,.eeyye为了衡量预报的精度 需要估计的值一个自然的想法是通过样本方差来估计总体方差 如何得到随机变量 的样本呢 由于模型或中的 隐含在预报变量 中 我们无法精确地把它从 中分离出来 因此也就无法得到随机变量 的样本 , a xby ,21.2归方程可以建立回和公式根据截距和斜率的估计样本的估计值来估计解决问题的途径是通过 .ey ye , yye.y5y 的估计量是所以由于随机误差的估计值

10、中是因此. n, 2 , 1i , abxyyye,y,x,y,x,y,xiiiiinn2211 相应它们的随机误差为相应它们的随机误差为而言而言对于样本点对于样本点, n, 2 , 1i , a xbyy ye iiiii 其估计值为其估计值为2nb, a Q2n1e 2n1 ,).residual(y,xe n1i22iii可以用可以用差估计总体方差的思想差估计总体方差的思想类比样本方类比样本方的的称为相应于点称为相应于点残差残差 ., . ).squaresofsumresidual(b, a Q,21ba ,222预报精度越高预报精度越高越小越小度度衡量回归方程的预报精衡量回归方程的预

11、报精可以用可以用称为称为给出给出由公式由公式和和其中其中的估计值的估计值作为作为残差平方和残差平方和2.n公式中的分母取是为了达到更好的估计效果 12111 :.2.niiinixxyyaybxbxx公式公式12?0?思考当样本容量为 或 时残差平方和为多少用这样的样本建立的线性回归方程的预 报误差为 吗.,e ,e ,e ,.,n21这方面的分析工作称为这方面的分析工作称为在可疑数据在可疑数据判断原始数据中是否存判断原始数据中是否存来判断模型拟合的效果来判断模型拟合的效果可以通过残差可以通过残差然后然后性回归模型来拟合数据性回归模型来拟合数据是否可以用线是否可以用线线性相关线性相关来粗略判断

12、它们是否相来粗略判断它们是否相首先要根据散点图首先要根据散点图系时系时在研究两个变量间的关在研究两个变量间的关 残差分析残差分析.21相应的残差数据重的原始数据以及列出女大学生身高和体表 382.0883.2627.6137.1618.4419.2627.2373.6e 5943616454505748kg/170155165175170157165165cm/87654321残差残差体重体重身高身高编号编号编号编号残差残差31 . 1图.31 . 1.,.残差图坐标的样本编号为横是以图这样作出的图形为等或体重估计值高数据或身可选为样本编号横坐标纵坐标为残差作图时分析残差特性我们可以利用图形来

13、残差图残差图编号编号残差残差31 . 1图.,.,;,.,61,31 .1越高回归方程的预报精确度拟合精度越高说明模型区域的宽度越窄均匀地落在水平的带状残差点比较另外则需要寻找其他的原因没有错误如果数据采集合数据归模型拟性回利用线然后再重新予以纠正就果数据采集有错误如是否有人为的错误点的过程中两个样本需要确认在采集这大个样本点的残差比较个样本点和第第出中可以看从图.yyy y1R:,R,n1i2in1i2ii22其计算公式是其计算公式是来刻画回归的效果来刻画回归的效果我们还可以用相关指数我们还可以用相关指数另外另外.rR,2的平方的平方系数系数恰好等于相关恰好等于相关线性模型中线性模型中在含有

14、一个解释变量的在含有一个解释变量的如果对某组数据如果对某组数据关性越强关性越强量和预报变量的线性相量和预报变量的线性相表示解释变表示解释变越接近于越接近于因为因为表示回归的效果越好表示回归的效果越好接近于接近于越越化的贡献率化的贡献率释变量对于预报变量变释变量对于预报变量变表示解表示解在线性回归模型中在线性回归模型中模型的拟合效果越好模型的拟合效果越好也就是说也就是说意味着残差平方和越小意味着残差平方和越小取值越大取值越大显然显然. ), 1R(, 1R.R,.,R,2222.R,R,22据的模型据的模型大的模型作为这组数大的模型作为这组数选择选择可以通过比较几个可以通过比较几个也也回归分析回

15、归分析种不同的回归方程进行种不同的回归方程进行取几取几可能性采可能性采.%64, %64,64.0R,12高引起的高引起的是由身是由身女大学生体重差异有女大学生体重差异有或者说或者说体重变化体重变化的的女大学生身高解释了女大学生身高解释了表明表明中中在例在例:,需要注意下列问题用身高预报体重时.,.,.1系木的高与直径之间的关描述北方干旱地区的树方程的高与直径之间的回归在南方多雨地区的树木不能用生长同样之间的关系女运动员的身高和体重描述和体重之间的回归方程不能用女大学生的身高例如所研究的样本的总体回归方程只适用于我们.,8020,.2之间的关系描述现在的身高和体重方程建立的回归年代的身高体重数

16、据所世纪能用不例如一般都有时间性我们所建立的回归方程.),ycm70 x,cm170,cm155x,(,.3显然不合适值时的程计算而用这个方的样本的取值范围为解释变量即在回归方程中重之间的关系就不恰当幼儿时期的身高和体那么用它来描述一个人立的建大学生身高和体重数据我们的回归方程是由女例如归方程的适用范围样本取值范围会影响回.,.4值的平均值它是预报变量的可能取事实上精确值的的预报值就是预报变量不能期望回归方程得到,:一般地 建立回归模型的基本步骤为 ;,1量是预报变量量是预报变量哪个变哪个变量量明确哪个变量是解释变明确哪个变量是解释变确定研究对象确定研究对象 ;,2如是否存在线性关系等如是否存

17、在线性关系等观察它们之间的关系观察它们之间的关系散点图散点图释主变量和预报变量的释主变量和预报变量的画出确定好的解画出确定好的解 );abxy,(3则选用线性回归方程则选用线性回归方程线性关系线性关系如我们观察到数据呈如我们观察到数据呈型型由经验确定回归方程类由经验确定回归方程类 );(4乘法乘法如最小二如最小二程中的参数程中的参数按一定规则估计回归方按一定规则估计回归方 .,),(5或模型是否合适等或模型是否合适等则检查数据是否有误则检查数据是否有误在异常在异常若存若存律性等等律性等等或残差呈现不随机的规或残差呈现不随机的规应残差过大应残差过大个别数据对个别数据对是否有异常是否有异常得出结果

18、后分析残差图得出结果后分析残差图.,317.2之间的回归方程与试建立中观察数据列于表组现收集了有关和温度一只红铃虫的产卵数例xyxy31表325115662421117/y35322927252321C/0个个产卵数产卵数温度温度41 . 1图温度温度产卵数产卵数.41 . 1据作散点图根据收集的数解所以不能相关关系线性个变量不呈线因此两带状区域内某个布在有分并没样本点在散点图中,.cc,ecy,.21xc12是待定参数和其中的周围指数函数曲线某一条可以发现样本点分布在根据已有的函数知识系立两个变量之间的关建来直接利用线性回归方程 .xy,.)cb,clna(abxz, ylnz.cc,212

19、1了间的非线性回归方程之和型来建立就可以利用线性回归模这样的周围直线换后样本点应该分布在则变令系变为线性关过对数变换把指数关系我们可以通和参数问题变为如何估计待定现在 .,abxy线性回归方程线性回归方程我们称之为非我们称之为非时时当回归方程不是形如当回归方程不是形如图的样本数据表的数据可以得到变换后由表, 4131.,51 . 1.4151 . 1用线性回归方程来拟合因此可以一条直线的附近变换后的样本点分布在看出中可以从图中数据的散点图给出了表784.5745.4190.4178.3045.3398.2946.1z35322927252321x41表产卵数的对数温度51 . 1图.843.

20、3272. 041xz到线性回归方程中的数据得由表回归方程为数对温度的非线性因此红铃虫的产卵 6ey 843.3x272.01.,.,41 . 1,243423非线性回归方程之间的与从而得到之间的线性回归方程与立然后建即令变换因此可以对温度变量做数为待定参和其中的附近次曲线中样本点集中在某二可以认为图另一方面xytyxtcccxcy.61 . 1,51是相应的散点图图应的温度的平方是红铃虫的产卵数和对表325115662421117y12251024841729625529441t51表.,61 . 1423下面介绍具体方法到还可以通过残差分析得这个结论之间的关系与来拟合二次曲线即不宜用合它回归方程来拟此不宜用线性因直线的周围不分布在一条的散点图并与可以看出中从图xycxcyty温度的平方数卵产61 . 1图中用线性回归模型拟合表的二次回归方程关于下面建立的指数回归方程关于前面已经建立了方程归需要建立两个相应的回残差为比较两个不同模型的51.,.,xyxy 7.54.202x367.0y xy,54.202t367.0y ty,222的二次回归方程为关于即的线性回归方程关于得到的数据 的残差计算公式分别为和则回归方程列的数据行第第表示表用的拟合效果和个回归方程可以通过残差来比较两76,1151.76ixi ; 7 , 2 , 1i ,eyy ye 843.3x272.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论