多元线性回归模型的案例讲解_第1页
多元线性回归模型的案例讲解_第2页
多元线性回归模型的案例讲解_第3页
多元线性回归模型的案例讲解_第4页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1. 表 1列出了某地区家庭人均鸡肉年消费量 Y与家庭月平均收入 X,鸡肉价格 P1 ,猪肉价格P2与牛肉价格 P3 的相关数据。年份P/( 元/P/( 元/年份 Y/千P/( 元/P/( 元/P/( 元/23123Y/ 千X/1/千克 )千克 )克X/ 元千克 )千克 )千克 )P/(元克元千克 )1980 2.783974.225.077.8319924.189113.977.9111.401981 2.994133.815.207.9219934.049315.219.5412.411982 2.984394.035.407.9219944.0710214.899.4212.761983

2、 3.084593.955.537.9219954.0111655.8312.3514.291984 3.124923.735.477.7419964.2713495.7912.9914.361985 3.335283.816.378.0219974.4114495.6711.7613.921986 3.565603.936.988.0419984.6715756.3713.0916.551987 3.646243.786.598.3919995.0617596.1612.9820.331988 3.676663.846.458.5520005.0119945.8912.8021.961989

3、 3.84 7174.017.009.372001 5.1722586.6414.1022.161990 4.04 7683.867.3210.612002 5.2924787.0416.8223.261991 4.03 8433.986.7810.48( 1) 求出该地区关于家庭鸡肉消费需求的如下模型:( 2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。先做回归分析,过程如下:输出结果如下:所以,回归方程为:(-2.463)(4.182)(-4.569)(1.483)(0.873)由上述回归结果可以知道,鸡肉消费需求受家庭收入水平和鸡肉价格的影响,而牛肉价格和猪肉价格对鸡肉消费需

4、求的影响并不显着。验证猪肉价格和鸡肉价格是否有影响,可以通过赤池准则(AIC)和施瓦茨准则( SC)。若AIC 值或 SC值增加了,就应该去掉该解释变量。去掉猪肉价格 P2与牛肉价格 P3重新进行回归分析,结果如下:VariableCoefficientStd. Errort-StatisticProb.?-1.12579C7 0.088420 -12.73237 0.0000LOG(X)0.4515470.02455418.389660.0000-0.37273LOG(P1)5 0.063104 -5.906668 0.0000?Mean dependentR-squared0.980287

5、 var1.361301?S.D. dependentAdjusted R-squared 0.978316 var0.187659?Akaike info-4.21844S.E. of regression0.027634 criterion5Sum squared resid0.015273 ?Schwarz criterion-4.070337Log likelihood51.51212 ?F-statistic497.2843?Prob(F-statisticDurbin-Watson stat 1.877706 )0.000000通过比较可以看出, AIC 值和 SC值都变小了,所以

6、应该去掉猪肉价格P2 与牛肉价格 P3 这两个解释变量。所以该地区猪肉与牛肉价格确实对家庭的鸡肉消费不产生显着影响。2. 表 2 列出了中国 2012 年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值 Y,资产合计 K 及职工人数 L。序号工业总产资产合计职工人数序号工业总产资产合计职工人数值Y/ 亿元K/亿元L/ 万人值Y/ 亿元K/亿元L/ 万人13722.7003078.220113.000017812.70001118.81043.0000021442.5201684.43067.00000181899.7002052.16061.0000031752.370274

7、2.77084.00000193692.8506113.110240.000041451.2901973.82027.00000204732.9009228.250222.000055149.3005917.010327.0000212180.2302866.65080.0000062291.1601758.770120.0000222539.7602545.63096.0000071345.170939.100058.00000233046.9504787.900222.00008656.7700694.940031.00000242192.6303255.290163.00009370.1

8、800363.480016.00000255364.8308129.680244.0000101590.3602511.99066.00000264834.6805260.200145.000011616.7100973.730058.00000277549.5807518.790138.000012617.9400516.010028.0000028867.9100984.520046.00000134429.1903785.91061.00000294611.39018626.94218.0000145749.0208688.030254.000030170.3000610.910019.

9、00000151781.3702798.90083.0000031325.53001523.19045.00000161243.0701808.44033.00000设定模型为: YAKL e( 1) 利用上述资料,进行回归分析;( 2) 回答:中国 2000 年的制造业总体呈现规模报酬不变状态吗?将模型进行双对数变换如下:1)进行回归分析:得到如下回归结果:于是,样本回归方程为:(1.59) (3.45)(1.79)从回归结果可以看出,模型的拟合度较好,在显着性水平0.1 的条件下,各项系数均通过了 t 检验。从 F 检验可以看出,方程对Y 的解释程度较少。R 0.7963 表明,工业总产值

10、对数值的 79.6%的变化可以由资产合计对数与职工的对数值的变化来解释,但仍有 20.4%的变化是由其他因素的变化影响的。从上述回归结果看,?0.971,即资产与劳动的产出弹性之和近似为1,表明中国制造业在 2000 年基本呈现规模报酬不变的状态。下面进行Wald检验对约束关系进行检验。过程如下:结果如下:由对应概率可以知道,不能拒绝原假设,即资产与劳动的产出弹性之和为1,表明中国制造业在 2000 年呈现规模报酬不变的状态。一、邹式检验(突变点检验、稳定性检验)1. 突变点检验1995-2012 年中国家用汽车拥有量 ( yt ,万辆)与城镇居民家庭人均可支配收入( xt ,元),数据见表

11、3。表 3 中国家用汽车拥有量(yt )与城镇居民家庭人均可支配收入(xt )数据年份yt (万辆)x(t元)年份yt(万辆)x(t元)199528.49739.12004205.423496.2199634.71899.62005249.964283199742.291002.22006289.674838.9199860.421181.42007358.365160.3199973.121375.72008423.655425.1200081.621510.22009533.885854200196.041700.62010625.3362802002118.22026.62011770.

12、786859.62003155.772577.42012968.987702.8下图是关于 yt 和 xt 的散点图:从上图可以看出,2006 年是一个突变点,当城镇居民家庭人均可支配收入突破4838.9 元之后,城镇居民家庭购买家用汽车的能力大大提高。现在用邹突变点检验法检验1996 年是不是一个突变点。H0:两个字样本( 19952005 年, 20062012 年)相对应的模型回归参数相等H1:备择假设是两个子样本对应的回归参数不等。在 19952012 年样本范围内做回归。在回归结果中作如下步骤:输入突变点:得到如下验证结果:由相伴概率可以知道,拒绝原假设,即两个样本(回归参数不相等。

13、所以, 2006 年是突变点。19952005 年, 20062012 年)的2. 稳定性检验以表 3 为例,在用 19952009 年数据建立的模型基础上,检验当把20102012 年数据加入样本后,模型的回归参数时候出现显着性变化。因为已经知道 2006 年为结构突变点,所以设定虚拟变量:019952005D1120062012对 19952012 年的数据进行回归分析:做邹氏稳定性检验:输入要检验的样本点:得到如下检验结果:由上述结果可以知道,F 值对应的概率为0.73 ,所以接受原假设,模型加入2010、2011和 2012 年的样本值后,回归参数没有发生显着性变化。二、似然比( LR

14、)检验有中国国债发行总量(DEBTt ,亿元)模型如下:其中 GDPt 表示国内生产总值(百亿元) , DEF t 表示年财政赤字额(亿元) , REPAYt 表示年还本付息额(亿元) 。 1990 2011 年数据见表 4。表 4 国债发行总量 DEBT t 、 GDPt 、财政赤字额 DEF t 、年还本付息额( REPAYt )数据199200043.0145.17868.928.581461.4216.178237.14246.8199121.7-37.32001448.624862.892669.68266.381258.83438.57199200283.8652.94717.65

15、55.523739.22346.344293.35336.221992001175.2379.4159.34542.5742.4745467.594574.52499.361992001549.7477.3471.7158.1628.956584.781581.52882.961992001967.21355.0589.85 89.644 -0.5739.5668678.846 529.563199138.2102.022002476.81918.365282.950.1772744.626582.42719962.8379.83200783.452922.23223.5119.623310.

16、92352.9755832199270.7149.28133.92003715.0820.6741743.51910.5883776.7693693199407.9169.09158.82012491.21579.8972872.3704180.1894.42272200375.4185.47146.4190.02012516.52007.70599714604959.33343对以上数据进行回归分析:得到如下输出结果:对应的回归表达式为:(0.2) (2.2)(31.5)(17.8)现在用似然比( LR)统计量检验约束 GDPt 对应的回归系数1等于零是否成立。过程如下:输入要检验的变量名:得到如下输出结果:输出结果上部是关于约束 GDP系数为零的 F 检验和 LR检验。由于两种检验的相应概率均小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论